Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37894499

RESUMO

Significant advancements have been made in the development of CO2 reduction processes for applications such as electrosynthesis, energy storage, and environmental remediation. Several materials have demonstrated great potential in achieving high activity and selectivity for the desired reduction products. Nevertheless, these advancements have primarily been limited to small-scale laboratory settings, and the considerable technical obstacles associated with large-scale CO2 reduction have not received sufficient attention. Many of the researchers have been faced with persistent challenges in the catalytic process, primarily stemming from the low Faraday efficiency, high overpotential, and low limiting current density observed in the production of the desired target product. The highlighted materials possess the capability to transform CO2 into various oxygenates, including ethanol, methanol, and formates, as well as hydrocarbons such as methane and ethane. A comprehensive summary of the recent research progress on these discussed types of electrocatalysts is provided, highlighting the detailed examination of their electrocatalytic activity enhancement strategies. This serves as a valuable reference for the development of highly efficient electrocatalysts with different orientations. This review encompasses the latest developments in catalyst materials and cell designs, presenting the leading materials utilized for the conversion of CO2 into various valuable products. Corresponding designs of cells and reactors are also included to provide a comprehensive overview of the advancements in this field.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 309: 123838, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38181625

RESUMO

Highly sensitive nature of excited state intramolecular proton transfer (ESIPT) functionality in organic fluorophores made them potential candidates for developing environmental sensors and bioimaging applications. Herein, we report the synthesis of V-shaped Dapsone based Schiff base ESIPT derivatives (1-3) and water sensitive wide fluorescence tuning from blue to red in DMSO. Solid-state structural analysis confirmed the V-shaped molecular structure with intramolecular H-bonding and substituent dependent molecular packing in the crystal lattice. 1 showed strong solid-state fluorescence (λmax = 554 nm, Φf = 21.2 %) whereas methoxy substitution (2 and 3) produced tunable but significantly reduced fluorescence (λmax = 547 (2) and 615 nm (3), Φf = 2.1 (2) and 6.5 % (3)). Interestingly, aggregation induced emission (AIE) studies in DMSO-water mixture revealed water sensitive fluorescence tuning. The trace amount of water (less than 1 %) in DMSO converted the non-emissive 1-3 into highly emissive state due to keto tautomer formation. Further increasing water percentage produced deprotonated state of 1-3 in DMSO and enhanced the fluorescence intensity with red shifting of emission peak. At higher water fraction, 1-3 in DMSO produced aggregates and red shifted the emission with reduction of fluorescence intensity. The concentration dependent fluorescence study revealed the very low detection limit of water in DMSO. The limit of detection (LOD) of 1, 2 and 3 were 0.14, 1.04 and 0.65 % of water in DMSO. Hence, simple Schiff bases of 1-3 showed water concentration dependent keto isomer, deprotonated and aggregated state tunable fluorescence in DMSO. Further, scanning electron microscopic (SEM) studies of 1-3 showed water concentration controlled self-assembly and tunable fluorescence.

3.
Heliyon ; 10(1): e23524, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38187254

RESUMO

The research article investigates the effect of incorporating the guanidinium carbonate (GuC) salt into the poly vinylpyrrolidone (PVP) and polyethylene oxide (PEO) polymer matrix. Various weight percentages of GuC enriched PVP/PEO solid polymer electrolytes (SPEs) have been prepared by the simplest solution casting process. XRD analysis revealed that the incorporation of the GuC salt led to changes in the crystalline structure of the PVP/PEO. FTIR analysis confirms the presence of guanidinium carbonate in the blended polymeric system. FESEM imaging showed the uniform and smooth surface view of the electrolytes. DSC analysis suggests that the addition of the GuC led to a decrease in the melting temperature and an increase in the crystallisation temperature. The temperature-dependent dielectric analysis showed that the presence of the organic salt led to an increase in the dielectric constant of the polymer blend. Among all the prepared electrolytes, 25 wt.% GuC added polymer electrolyte achieved a higher conductivity of 3.00764 × 10-7 S/cm. Overall, the results of the study suggest that the incorporation of the GuC salt into the PVP/PEO can lead to significant changes in the structural, thermal, and dielectric properties of the blend. These findings have potential implications for the use of PVP/PEO blends in solid state battery applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA