Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 59(6): 3417-3427, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-31880151

RESUMO

The (C2H5NH3)2[BiBr5] (EBB) crystals adopt the one-dimensional (1D) polymeric anionic form [BiBr5]∞2-, which is preferred by halobismuthates(III) exhibiting polar properties and realized in R2MX5 stoichiometry. Differential scanning calorimetry and dilatometric measurements reveal reversible structural phase transitions: at 160 K (phase I → phase II) and 120 K (phase II → phase III). The resolved crystal structures of EBB show the centrosymmetric space group in phase I (Aeam), polar (Pca21) in phase II, and polar (Aea2) in phase III. The presence of dielectric hysteresis loops in phases II and III evidence ferroelectric properties. The dielectric response [ε*(ω,T)] of EBB close to 160 K is characteristic of ferroelectrics with a critical slowing down process. The molecular mechanism of a paraelectric-ferroelectric phase transition at 160 K is explained as "order-disorder" (assigned to the dynamics of the ethylammonium cations) and dominating "displacive" (related to strong distortion of the 1D anionic network). The optical band gap obtained from UV-vis measurements is about 2.6 eV. The conduction band minimum is formed by the hybridized Bi 6p and Br 4p states. An analysis of the CSD results for haloantimonates(III) and halobismuthates(III) ferroelectrics characterized by [MX4]-, [M2X9]3-, [MX5]2-, and [M2X11]5- anions is given.

2.
ACS Appl Mater Interfaces ; 14(1): 1460-1471, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34965720

RESUMO

Hybrid organic-inorganic perovskites providing integrated functionalities for multimodal switching applications are widely sought-after materials for optoelectronics. Here, we embark on a study of a novel pyrrolidinium-based cyanide perovskite of formula (C4H10N)2KCr(CN)6, which displays thermally driven bimodal switching characteristics associated with an order-disorder phase transition. Dielectric switching combines two features important from an application standpoint: high permittivity contrast (Δε' = 38.5) and very low dielectric losses. Third-order nonlinear optical switching takes advantage of third-harmonic generation (THG) bistability, thus far unprecedented for perovskites and coordination polymers. Structurally, (C4H10N)2KCr(CN)6 stands out as the first example of a three-dimensional stable perovskite among formate-, azide-, and cyanide-based metal-organic frameworks comprising large pyrrolidinium cations. Its stability, reflected also in robust switching characteristics, has been tracked down to the Cr3+ component, the ionic radius of which provides a large enough metal-cyanide cage for the pyrrolidinium cargo. While the presence of polar pyrrolidinium cations leads to excellent switchable dielectric properties, the presence of Cr3+ is also responsible for efficient phosphorescence, which is remarkably shifted to the near-infrared region (770 to 880 nm). The presence of Cr3+ was also found indispensable to the THG switching functionality. It is also found that a closely related cobalt-based analogue doped with Cr3+ ions displays distinct near-infrared phosphorescence as well. Thus, doping with Cr3+ ions is an effective strategy to introduce phosphorescence as an additional functional property into the family of cobalt-cyanide thermally switchable dielectrics.

3.
Chem Mater ; 34(22): 10104-10112, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36439319

RESUMO

Mixing molecular cations in hybrid lead halide perovskites is a highly effective approach to enhance the stability and performance of optoelectronic devices based on these compounds. In this work, we prepare and study novel mixed 3D methylammonium (MA)-ethylammonium (EA) MA1-x EA x PbI3 (x < 0.4) hybrid perovskites. We use a suite of different techniques to determine the structural phase diagram, cation dynamics, and photoluminescence properties of these compounds. Upon introduction of EA, we observe a gradual lowering of the phase-transition temperatures, indicating stabilization of the cubic phase. For mixing levels higher than 30%, we obtain a complete suppression of the low-temperature phase transition and formation of a new tetragonal phase with a different symmetry. We use broad-band dielectric spectroscopy to study the dielectric response of the mixed compounds in an extensive frequency range, which allows us to distinguish and characterize three distinct dipolar relaxation processes related to the molecular cation dynamics. We observe that mixing increases the rotation barrier of the MA cations and tunes the dielectric permittivity values. For the highest mixing levels, we observe the signatures of the dipolar glass phase formation. Our findings are supported by density functional theory calculations. Our photoluminescence measurements reveal a small change of the band gap upon mixing, indicating the suitability of these compounds for optoelectronic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA