Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Compr Rev Food Sci Food Saf ; 16(6): 1345-1358, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33371593

RESUMO

Mandarins are a member of the Citrus genus and are the focus of growing commercial interest, with satsuma mandarins (Citrus unshiu) and the common mandarin (Citrus reticulata Blanco) being the most important mandarin varieties. The possible health benefits and functional properties of those fruits are often associated with the antioxidative function of vitamin C, carotenoids, and phenolic compounds. While most mandarins are consumed fresh, many are processed into juices (mostly cloudy), usually via thermal processing which can lead to the creation of off-flavors and may diminish nutritional quality. The aim of this review is to summarize the most significant and recent information on the safety, sensorial properties, and nutritional benefits of mandarins and their processing into juice. The article also discusses recent information regarding the bioaccessibility of valuable, mandarin specific, compounds.

2.
Polymers (Basel) ; 15(11)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37299367

RESUMO

This research was aimed to make biolayer coatings enriched with orange peel essential oil (OPEO) on synthetic laminate, oriented poly(ethylene-terephthalate)/polypropylene (PET-O/PP). Coating materials were taken from biobased and renewable waste sources, and the developed formulation was targeted for food packaging. The developed materials were characterized for their barrier (O2, CO2, and water vapour), optical (colour, opacity), surface (inventory of peaks by FTIR), and antimicrobial activity. Furthermore, the overall migration from a base layer (PET-O/PP) in an acetic acid (3% HAc) and ethanol aqueous solution (20% EtOH) were measured. The antimicrobial activity of chitosan (Chi)-coated films was assessed against Escherichia coli. Permeation of the uncoated samples (base layer, PET-O/PP) increased with the temperature increase (from 20 °C to 40 °C and 60 °C). Films with Chi-coatings were a better barrier to gases than the control (PET-O/PP) measured at 20 °C. The addition of 1% (w/v) OPEO to the Chi-coating layer showed a permeance decrease of 67% for CO2 and 48% for O2. The overall migrations from PET-O/PP in 3% HAc and 20% EtOH were 1.8 and 2.3 mg/dm2, respectively. Analysis of spectral bands did not indicate any surface structural changes after exposure to food simulants. Water vapour transmission rate values were increased for Chi-coated samples compared to the control. The total colour difference showed a slight colour change for all coated samples (ΔE > 2). No significant changes in light transmission at 600 nm for samples containing 1% and 2% OLEO were observed. The addition of 4% (w/v) OPEO was not enough to obtain a bacteriostatic effect, so future research is needed.

3.
Polymers (Basel) ; 14(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36501462

RESUMO

In the last decade both scientific and industrial community focuses on food with the highest nutritional and organoleptic quality, together with appropriate safety. Accordingly, strong efforts have been made in finding appropriate emerging technologies for food processing and packaging. Parallel to this, an enormous effort is also made to decrease the negative impact of synthetic polymers not only on food products (migration issues) but on the entire environment (pollution). The science of packaging is also subjected to changes, resulting in development of novel biomaterials, biodegradable or not, with active, smart, edible and intelligent properties. Combining non-thermal processing with new materials opens completely new interdisciplinary area of interest for both food and material scientists. The aim of this review article is to give an insight in the latest research data about synergies between non-thermal processing technologies and selected packaging materials/concepts.

4.
Food Chem ; 276: 680-691, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30409648

RESUMO

The use of Allium species and their extracts has been known since immemorial times due to their health beneficial properties. It is known that functional properties of Allium genus come from the high content of bioactive compounds. The biological activity of Allium extracts will be conditioned by the type of Allium variety, agricultural conditions, and specific extraction process used since all these factors affect the content and the profile of bioactive compounds. Innovative extraction techniques in comparison to conventional processes could be considered as a promising tool to recover bioactive compounds from Allium spp. with antimicrobial and anti-inflammatory properties. Trying to fill the gap in the literature, this paper reviews the chemical composition, the effects of processing on the nutritional and bioactive composition of Allium species and their extracts. Moreover, the antimicrobial and anti-inflammatory effects, as well as the bioavailability of bioactive compounds of edible members from the Allium genus is discussed.


Assuntos
Allium/química , Anti-Infecciosos/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Compostos de Enxofre/farmacologia , Agricultura , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacocinética , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacocinética , Disponibilidade Biológica , Armazenamento de Alimentos , Alho/química , Humanos , Cebolas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Compostos de Enxofre/química
5.
Food Res Int ; 113: 245-262, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30195519

RESUMO

Market interest in aromatic plants from the Mediterranean is continuously growing mainly due to their medicinal and bioactive compounds (BACs) with other valuable constituents from essential oils (EOs). From ancient times, these plants have been important condiments for traditional Mediterranean cuisine and remedies in folk medicine. Nowadays, they are considered as important factors for food quality and safety, due to prevention of various deteriorative factors like oxidations and microbial spoilage. EOs have different therapeutic benefits (e.g. antioxidant, anti-inflammatory, antimicrobial, and antifungal), while BACs mostly affect nutritive, chemical, microbiological, and sensory quality of foods. Currently, many plant extracts are used for functional (healthy) foods, which additionally fuels consumer and industrial interest in sustainable and non-toxic routes for their production. EO yields from dried plants are below 5%. Their extraction is strongly dependent on the hydrophobic or lipophilic character of target molecules, hence the common use of organic solvents. Similarly, BACs encompass a wide range of substances with varying structures as reflected by their different physical/chemical qualities. Thus, there is a need to identify optimal non-toxic extraction method(s) for isolation/separation of EO/BCs from plants. Various innovative non-thermal extractions (e.g. ultrasound-, high-pressure-, pulsed electric fields assisted extraction, etc.) have been proposed to overcome the above mentioned limitations. These techniques are "green" in concept, as they are shorter, avoid toxic chemicals, and are able to improve extract yields and quality with reduced consumption of energy and solvents. This research provides an overview of such extractions of both BAC and EOs from Mediterranean herbs, sustained by innovative and non-conventional energy sources.


Assuntos
Antioxidantes/isolamento & purificação , Lamiaceae/química , Óleos Voláteis/isolamento & purificação , Extratos Vegetais/química , Antioxidantes/análise , Antioxidantes/química , Fracionamento Químico/métodos , Química Verde/métodos , Região do Mediterrâneo , Óleos Voláteis/análise , Óleos Voláteis/química , Olea/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA