RESUMO
Alternative splicing (AS) is a key process underlying the expansion of proteomic diversity and the regulation of gene expression. Here, we identify an evolutionarily conserved embryonic stem cell (ESC)-specific AS event that changes the DNA-binding preference of the forkhead family transcription factor FOXP1. We show that the ESC-specific isoform of FOXP1 stimulates the expression of transcription factor genes required for pluripotency, including OCT4, NANOG, NR5A2, and GDF3, while concomitantly repressing genes required for ESC differentiation. This isoform also promotes the maintenance of ESC pluripotency and contributes to efficient reprogramming of somatic cells into induced pluripotent stem cells. These results reveal a pivotal role for an AS event in the regulation of pluripotency through the control of critical ESC-specific transcriptional programs.
Assuntos
Processamento Alternativo , Reprogramação Celular , Células-Tronco Embrionárias/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Pluripotentes/metabolismo , Proteínas Repressoras/metabolismo , Animais , DNA/metabolismo , Células-Tronco Embrionárias/citologia , Genes Homeobox , Humanos , Camundongos , Células-Tronco Pluripotentes/citologia , Isoformas de Proteínas/metabolismoRESUMO
Alternative splicing is a key process underlying the evolution of increased proteomic and functional complexity and is especially prevalent in the mammalian nervous system. However, the factors and mechanisms governing nervous system-specific alternative splicing are not well understood. Through a genome-wide computational and expression profiling strategy, we have identified a tissue- and vertebrate-restricted Ser/Arg (SR) repeat splicing factor, the neural-specific SR-related protein of 100 kDa (nSR100). We show that nSR100 regulates an extensive network of brain-specific alternative exons enriched in genes that function in neural cell differentiation. nSR100 acts by increasing the levels of the neural/brain-enriched polypyrimidine tract binding protein and by interacting with its target transcripts. Disruption of nSR100 prevents neural cell differentiation in cell culture and in the developing zebrafish. Our results thus reveal a critical neural-specific alternative splicing regulator, the evolution of which has contributed to increased complexity in the vertebrate nervous system.
Assuntos
Processamento Alternativo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Encéfalo/citologia , Diferenciação Celular , Linhagem Celular , Humanos , Camundongos , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Proteínas Nucleares/química , Proteínas de Ligação a RNA/química , Fatores de Processamento de Serina-ArgininaRESUMO
PURPOSE OF REVIEW: Although extensively studied for over a decade, gene expression programs established at the epigenetic and/or transcriptional levels do not fully characterize cancer stem cells (CSC). This review will highlight the latest advances regarding the functional relevance of different key post-transcriptional regulations and how they are coordinated to control CSC homeostasis. RECENT FINDINGS: In the past 2 years, several groups have identified master post-transcriptional regulators of CSC genetic programs, including RNA modifications, RNA-binding proteins, microRNAs and long noncoding RNAs. Of particular interest, these studies reveal that different post-transcriptional mechanisms are coordinated to control key signalling pathways and transcription factors to either support or suppress CSC homeostasis. SUMMARY: Deciphering molecular mechanisms coordinating plasticity, survival and tumourigenic capacities of CSCs in adult and paediatric cancers is essential to design new antitumour therapies. An entire field of research focusing on post-transcriptional gene expression regulation is currently emerging and will significantly improve our understanding of the complexity of the molecular circuitries driving CSC behaviours and of druggable CSC weaknesses.
Assuntos
Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Processamento Pós-Transcricional do RNA , Animais , Homeostase , Humanos , MicroRNAs/metabolismo , Neoplasias/genética , Neoplasias/patologia , Células-Tronco Neoplásicas/patologia , RNA Longo não Codificante/metabolismo , RNA Neoplásico/metabolismoRESUMO
Previous investigations of the core gene regulatory circuitry that controls the pluripotency of embryonic stem (ES) cells have largely focused on the roles of transcription, chromatin and non-coding RNA regulators. Alternative splicing represents a widely acting mode of gene regulation, yet its role in regulating ES-cell pluripotency and differentiation is poorly understood. Here we identify the muscleblind-like RNA binding proteins, MBNL1 and MBNL2, as conserved and direct negative regulators of a large program of cassette exon alternative splicing events that are differentially regulated between ES cells and other cell types. Knockdown of MBNL proteins in differentiated cells causes switching to an ES-cell-like alternative splicing pattern for approximately half of these events, whereas overexpression of MBNL proteins in ES cells promotes differentiated-cell-like alternative splicing patterns. Among the MBNL-regulated events is an ES-cell-specific alternative splicing switch in the forkhead family transcription factor FOXP1 that controls pluripotency. Consistent with a central and negative regulatory role for MBNL proteins in pluripotency, their knockdown significantly enhances the expression of key pluripotency genes and the formation of induced pluripotent stem cells during somatic cell reprogramming.
Assuntos
Processamento Alternativo , Reprogramação Celular , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Proteínas de Ligação a RNA/metabolismo , Processamento Alternativo/genética , Motivos de Aminoácidos , Animais , Diferenciação Celular/genética , Linhagem Celular , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Cinética , Camundongos , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/metabolismoRESUMO
Adult tumors diagnosed as cerebellar glioblastoma (cGBM) are rare and their optimal classification remains to be determined. The aim of this study was to identify subgroups of cGBM based on targeted molecular analysis. cGBM diagnosed between 2003 and 2017 were identified from the French Brain Tumor Database and reviewed according to the WHO 2021 classification. The following molecular alterations were studied: IDH1/2 , H3F3A , FGFR1 , BRAF , TERT promoter mutations, EGFR amplification, MGMT promoter methylation, and alternative lengthening of telomere status. DNA methylation profile was assessed in a subset of cases. Eighty-three cGBM were included and could be classified into 6 mutually exclusive subgroups associated with median age at diagnosis (MA) and prognosis: TERT -mutant and/or EGFR -amplified tumors (n=22, 26.5%, MA=62 y, median overall survival [OS]=4 mo), H3K27M-mutant tumors (n=15, 18.1%, MA=48 y, median OS=8 mo), mitogen-activated protein kinases (MAPK) pathway-activated tumors ( FGFR1 , BRAF mutation, or occurring in neurofibromatosis type I patients, n=15, 18.1%, MA=48 y, median OS=57 mo), radiation-associated tumors (n=5, 6%, MA=47 y, median OS=5 mo), IDH-mutant tumors (n=1), and unclassified tumors (n=25, 30.1%, MA=63 y, median OS=17 mo). Most MAPK pathway-activated tumors corresponded to high-grade astrocytomas with piloid features based on DNA methylation profiling. In multivariate analysis, MAPK pathway-activating alterations, ATRX loss of expression, and alternative lengthening of telomere positivity were independently associated with a better outcome and TERT / EGFR alterations with a worse outcome. cGBM display an important intertumoral heterogeneity. Targeted molecular analysis enables to classify the majority of tumors diagnosed as cGBM into mutually exclusive and clinically relevant subgroups. The presence of MAPK pathway alterations is associated with a much better prognosis.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Infratentoriais , Adulto , Humanos , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Receptores ErbB/genética , Glioblastoma/diagnóstico , Glioblastoma/genética , Isocitrato Desidrogenase/genética , Mutação , Prognóstico , Proteínas Proto-Oncogênicas B-raf/genéticaRESUMO
Glioblastomas (GBs) are incurable brain tumors. The persistence of aggressive stem-like tumor cells after cytotoxic treatments compromises therapeutic efficacy, leading to GBM recurrence. Forcing the GBM cells to irreversibly abandon their aggressive stem-like phenotype may offer an alternative to conventional cytotoxic treatments. Here, we show that the RNA binding protein CELF2 is strongly expressed in mitotic and OLIG2-positive GBM cells, while it is downregulated in differentiated and non-mitotic cells by miR-199a-3p, exemplifying GBM intra-tumor heterogeneity. Using patient-derived cells and human GBM samples, we demonstrate that CELF2 plays a key role in maintaining the proliferative/OLIG2 cell phenotype with clonal and tumorigenic properties. Indeed, we show that CELF2 deficiency in patient-derived GSCs drastically reduced tumor growth in the brains of nude mice. We further show that CELF2 promotes TRIM28 and G9a expression, which drive a H3K9me3 epigenetic profile responsible for the silencing of the SOX3 gene. Thus, CELF2, which is positively correlated with OLIG2 and Ki67 expression in human GBM samples, is inversely correlated with SOX3 and miR-199a-3p. Accordingly, the invalidation of SOX3 in CELF2-deficient patient-derived cells rescued proliferation and OLIG2 expression. Finally, patients expressing SOX3 above the median level of expression tend to have a longer life expectancy. CELF2 is therefore a crucial target for the malignant potential of GBM and warrants attention when developing novel anticancer strategies.
RESUMO
Embryonic stem cell (ESC) fate decisions are regulated by a complex circuitry that coordinates gene expression at multiple levels from chromatin to mRNA processing. Recently, ribosome biogenesis and translation have emerged as key pathways that efficiently control stem cell homeostasis, yet the underlying molecular mechanisms remain largely unknown. Here, we identified RSL24D1 as highly expressed in both mouse and human pluripotent stem cells. RSL24D1 is associated with nuclear pre-ribosomes and is required for the biogenesis of 60S subunits in mouse ESCs. Interestingly, RSL24D1 depletion significantly impairs global translation, particularly of key pluripotency factors and of components from the Polycomb Repressive Complex 2 (PRC2). While having a moderate impact on differentiation, RSL24D1 depletion significantly alters ESC self-renewal and lineage commitment choices. Altogether, these results demonstrate that RSL24D1-dependant ribosome biogenesis is both required to sustain the expression of pluripotent transcriptional programs and to silence PRC2-regulated developmental programs, which concertedly dictate ESC homeostasis.
Assuntos
Células-Tronco Embrionárias , Células-Tronco Pluripotentes , Humanos , Animais , Camundongos , Células-Tronco Embrionárias/metabolismo , Diferenciação Celular/genética , Complexo Repressor Polycomb 2/metabolismoRESUMO
BACKGROUND: High-grade adult-type diffuse gliomas (HGGs) constitute a heterogeneous group of aggressive tumors that are mostly incurable. Recent advances highlighting the contribution of ribosomes to cancer development have offered new clinical perspectives. Here, we uncovered that isocitrate dehydrogenase (IDH)wt and IDHmut HGGs display distinct alterations of ribosome biology, in terms of rRNA epitranscriptomics and ribosome biogenesis, which could constitute novel hallmarks that can be exploited for the management of these pathologies. METHODS: We analyzed (1) the ribosomal RNA 2'O-ribose methylation (rRNA 2'Ome) using RiboMethSeq and in-house developed bioinformatics tools (https://github.com/RibosomeCRCL/ribomethseq-nfandrRMSAnalyzer) on 3 independent cohorts compiling 71 HGGs (IDHwt n = 30, IDHmut n = 41) and 9 non-neoplastic samples, (2) the expression of ribosome biogenesis factors using medium throughput RT-qPCR as a readout of ribosome biogenesis, and (3) the sensitivity of 5 HGG cell lines to RNA Pol I inhibitors (CX5461, BMH-21). RESULTS: Unsupervised analysis demonstrated that HGGs could be distinguished based on their rRNA 2'Ome epitranscriptomic profile, with IDHwt glioblastomas displaying the most significant alterations of rRNA 2'Ome at specific sites. In contrast, IDHmut HGGs are largely characterized by an overexpression of ribosome biogenesis factors compared to non-neoplastic tissues or IDHwt glioblastomas. Finally, IDHmut HGG-derived spheroids display higher cytotoxicity to CX5461 than IDHwt glioblastoma, while all HGG spheroids display a similar cytotoxicity to BMH-21. CONCLUSIONS: In HGGs, IDH mutational status is associated with specific alterations of the ribosome biology and with distinct sensitivities to RNA Pol I inhibitors.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Adulto , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Neoplasias Encefálicas/patologia , Glioblastoma/genética , Glioblastoma/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Glioma/patologia , Metilação , Ribossomos/genética , Ribossomos/metabolismo , Ribossomos/patologia , MutaçãoRESUMO
Glioblastoma (GBM) is the most deadly type of malignant brain tumor, despite extensive molecular analyses of GBM cells. In recent years, the tumor microenvironment (TME) has been recognized as an important player and therapeutic target in GBM. However, there is a need for a full and integrated understanding of the different cellular and molecular components involved in the GBM TME and their interactions for the development of more efficient therapies. In this review, we provide a comprehensive report of the GBM TME, which assembles the contributions of physicians and translational researchers working on brain tumor pathology and therapy in France. We propose a holistic view of the subject by delineating the specific features of the GBM TME at the cellular, molecular, and therapeutic levels.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/terapia , Glioblastoma/tratamento farmacológico , Microambiente Tumoral/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologiaRESUMO
The detection of cancer stem-like cells (CSCs) is mainly based on molecular markers or functional tests giving a posteriori results. Therefore label-free and real-time detection of single CSCs remains a difficult challenge. The recent development of microfluidics has made it possible to perform high-throughput single cell imaging under controlled conditions and geometries. Such a throughput requires adapted image analysis pipelines while providing the necessary amount of data for the development of machine-learning algorithms. In this paper, we provide a data-driven study to assess the complexity of brightfield time-lapses to monitor the fate of isolated cancer stem-like cells in non-adherent conditions. We combined for the first time individual cell fate and cell state temporality analysis in a unique algorithm. We show that with our experimental system and on two different primary cell lines our optimized deep learning based algorithm outperforms classical computer vision and shallow learning-based algorithms in terms of accuracy while being faster than cutting-edge convolutional neural network (CNNs). With this study, we show that tailoring our deep learning-based algorithm to the image analysis problem yields better results than pre-trained models. As a result, such a rapid and accurate CNN is compatible with the rise of high-throughput data generation and opens the door to on-the-fly CSC fate analysis.
Assuntos
Neoplasias , Humanos , Aprendizado de Máquina , Redes Neurais de Computação , Algoritmos , Processamento de Imagem Assistida por Computador/métodosRESUMO
Recent evidence suggests that the chimeric protein SETMAR is a factor of interest in cancer, especially in glioblastoma. However, little is known about the expression of this protein in glioblastoma tissues, and no study has been done to assess if SETMAR could be a prognostic and/or diagnostic marker of glioblastoma. We analyzed protein extracts of 47 glioblastoma samples coming from a local and a national cohort of patients. From the local cohort, we obtained localized biopsies from the central necrosis area, the tumor, and the perilesional brain. From the French Glioblastoma Biobank (FGB), we obtained three types of samples: from the same tumors before and after treatment, from long survivors, and from very short survivors. We studied the correlations between SETMAR amounts, clinical profiles of patients and other associated proteins (PTN, snRNP70 and OLIG2). In glioblastoma tissues, the shorter isoform of SETMAR (S-SETMAR) was predominant over the full-length isoform (FL-SETMAR), and the expression of both SETMAR variants was higher in the tumor compared to the perilesional tissues. Data from the FGB showed that SETMAR amounts were not different between the initial tumors and tumor relapses after treatment. These data also showed a trend toward higher amounts of S-SETMAR in long survivors. In localized biopsies, we found a positive correlation between good prognosis and large amounts of S-SETMAR in the perilesional area. This is the main result presented here: survival in Glioblastoma is correlated with amounts of S-SETMAR in perilesional brain, which should be considered as a new relevant prognosis marker.
RESUMO
Recent findings suggest that ribosomes, the translational machineries, can display a distinct composition depending on physio-pathological contexts. Thanks to outstanding technological breakthroughs, many studies have reported that variations of rRNA modifications, and more particularly the most abundant rRNA chemical modification, the rRNA 2'O-ribose methylation (2'Ome), intrinsically occur in many organisms. In the last 5 years, accumulating reports have illustrated that rRNA 2'Ome varies in human cell lines but also in living organisms (yeast, plant, zebrafish, mouse, human) during development and diseases. These rRNA 2'Ome variations occur either within a single cell line, organ, or patient's sample (i.e., intra-variability) or between at least two biological conditions (i.e., inter-variability). Thus, the ribosomes can tolerate the absence of 2'Ome at some specific positions. These observations question whether variations in rRNA 2'Ome could provide ribosomes with particular translational regulatory activities and functional specializations. Here, we compile recent studies supporting the heterogeneity of ribosome composition at rRNA 2'Ome level and provide an overview of the natural diversity in rRNA 2'Ome that has been reported up to now throughout the kingdom of life. Moreover, we discuss the little evidence that suggests that variations of rRNA 2'Ome can effectively impact the ribosome activity and contribute to the etiology of some human diseases.
Assuntos
Evolução Molecular , Processamento Pós-Transcricional do RNA , RNA Fúngico/metabolismo , RNA Ribossômico/metabolismo , Ribossomos/metabolismo , Leveduras/metabolismo , Animais , Linhagem Celular , Humanos , Metilação , Biossíntese de Proteínas , RNA Fúngico/genética , RNA Ribossômico/genética , Ribossomos/genética , Leveduras/genéticaRESUMO
BACKGROUND: Diffuse hemispheric gliomas, H3 G34-mutant (DHG H3G34-mutant) constitute a distinct type of aggressive brain tumors. Although initially described in children, they can also affect adults. The aims of this study were to describe the characteristics of DHG H3G34-mutant in adults and to compare them to those of established types of adult WHO grade IV gliomas. METHODS: The characteristics of 17 adult DHG H3G34-mutant, 32 H3.3 K27M-mutant diffuse midline gliomas (DMG), 100 IDH-wildtype, and 36 IDH-mutant glioblastomas were retrospectively analyzed. RESULTS: Median age at diagnosis in adult DHG H3G34-mutant was 25 years (range: 19-33). All tumors were hemispheric. For 9 patients (56%), absent or faint contrast enhancement initially suggested another diagnosis than a high-grade glioma, and diffusion-weighted imaging seemed retrospectively more helpful to suspect an aggressive tumor than MR-spectroscopy and perfusion MRI. All cases were IDH-wildtype. Most cases were immunonegative for ATRX (93%) and Olig2 (100%) and exhibited MGMT promoter methylation (82%). The clinical and radiological presentations of adult DHG H3G34-mutant were different from those of established types of adult grade IV gliomas. Median overall survival of adult DHG H3G34-mutant was 12.4 months compared to 19.6 months (P = .56), 11.7 months (P = .45), and 50.5 months (P = .006) in H3.3 K27M-mutant DMG, IDH-wildtype, and IDH-mutant glioblastomas, respectively. CONCLUSIONS: Adult DHG H3G34-mutant are associated with distinct characteristics compared to those of established types of adult WHO grade IV gliomas. This study supports considering these tumors as a new type of WHO grade IV glioma in future classifications.
RESUMO
Deciphering the role of alternative splicing in developmental processes relies on the identification of key genes whose expression is controlled by splicing regulators throughout the growth of a whole organism. Modulating the expression levels of five SR proteins in the developing eye of Drosophila melanogaster revealed that these splicing factors induce various phenotypic alterations in eye organogenesis and also affect viability. Although the SR proteins dASF/SF2 and B52 caused defects in ommatidia structure, only B52 impaired normal axonal projections of photoreceptors and neurogenesis in visual ganglia. Microarray analyses revealed that many transcripts involved in brain organogenesis have altered splicing profiles upon both loss and gain of B52 function. Conversely, a large proportion of transcripts regulated by dASF/SF2 are involved in eye development. These differential and specific effects of SR proteins indicate that they function to confer accuracy to developmental gene expression programs by facilitating the cell lineage decisions that underline the generation of tissue identities.
Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Olho/crescimento & desenvolvimento , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Animais Geneticamente Modificados , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Sobrevivência Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Olho/citologia , Olho/metabolismo , Feminino , Genes Controladores do Desenvolvimento , Genes de Insetos , Imunoprecipitação , Larva/citologia , Masculino , Morfogênese , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Células Fotorreceptoras de Invertebrados/citologia , Células Fotorreceptoras de Invertebrados/metabolismo , Splicing de RNA/genética , Fatores de Processamento de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes de Fusão/metabolismo , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
Embryonic stem cells (ESCs) and adult stem cells (ASCs) possess the remarkable capacity to self-renew while remaining poised to differentiate into multiple progenies in the context of a rapidly developing embryo or in steady-state tissues, respectively. This ability is controlled by complex genetic programs, which are dynamically orchestrated at different steps of gene expression, including chromatin remodeling, mRNA transcription, processing, and stability. In addition to maintaining stem cell homeostasis, these molecular processes need to be rapidly rewired to coordinate complex physiological modifications required to redirect cell fate in response to environmental clues, such as differentiation signals or tissue injuries. Although chromatin remodeling and mRNA expression have been extensively studied in stem cells, accumulating evidence suggests that stem cell transcriptomes and proteomes are poorly correlated and that stem cell properties require finely tuned protein synthesis. In addition, many studies have shown that the biogenesis of the translation machinery, the ribosome, is decisive for sustaining ESC and ASC properties. Therefore, these observations emphasize the importance of translational control in stem cell homeostasis and fate decisions. In this review, we will provide the most recent literature describing how ribosome biogenesis and translational control regulate stem cell functions and are crucial for accommodating proteome remodeling in response to changes in stem cell fate.
Assuntos
Células-Tronco Adultas/metabolismo , Células-Tronco Embrionárias/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo , Animais , Diferenciação Celular , Homeostase , Humanos , Camundongos , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/metabolismoRESUMO
Glioblastoma (GBM) is one of the cancers with the worst prognosis, despite huge efforts to understand its unusual heterogeneity and aggressiveness. This is mainly due to glioblastoma stem cells (GSCs), which are also responsible for the frequent tumor recurrence following surgery, chemotherapy or radiotherapy. In this study, we investigate the expression pattern of the anti-apoptotic BCL-xL protein in several GBM cell lines and the role it might play in GSC-enriched tumorspheres. We report that several GBM cell lines have an increased BCL-xL expression in tumorspheres compared to differentiated cells. Moreover, by artificially modulating BCL-xL expression, we unravel a correlation between BCL-xL and tumorsphere size. In addition, BCL-xL upregulation appears to sensitize GBM tumorspheres to newly developed BH3 mimetics, opening promising therapeutic perspectives for treating GBM patients.
RESUMO
BACKGROUND: Biopsies in patients with a suspected glioma are occasionally nondiagnostic. OBJECTIVE: To explore the utility of molecular testing in this setting by determining whether IDH1 and TERT promoter (pTERT) mutations could be detected in nondiagnostic biopsies from glioma patients. METHODS: Using SNaPshot polymerase chain reaction, we retrospectively assessed IDH1 and pTERT mutation status in nondiagnostic biopsies from 28 glioma patients. RESULTS: The nondiagnostic biopsy (needle biopsy n = 25, open or endoscopic biopsy n = 3) consisted of slight glial cell hypercellularity, hemorrhage, and/or necrosis. After another biopsy (n = 23) or a subsequent surgical resection (n = 5) the diagnosis was an IDH1-wildtype (WT) pTERT-mutant glioma (glioblastoma n = 16, astrocytoma n = 4), an IDH1-mutant pTERT-mutant oligodendroglioma (n = 1), an IDH1-mutant pTERT-WT astrocytoma (n = 1), and an IDH1-WT pTERT-WT glioblastoma (n = 6). An IDH1 mutation was identified in the nondiagnostic biopsies of the 2 IDH-mutant gliomas, and a pTERT mutation in the nondiagnostic biopsies of 16 out of the 21 of pTERT mutant-gliomas (76%). Overall, an IDH1 and/or a pTERT mutation were detected in 17 out of 28 (61%) of nondiagnostic biopsies. Retrospective analysis of the nondiagnostic biopsies based on these results and on imaging characteristics suggested that a new biopsy could have been avoided in 6 patients in whom a diagnosis of "molecular glioblastoma" could have been done with a high level of confidence. CONCLUSION: In the present series, IDH1 and pTERT mutations could be detected in a high proportion of nondiagnostic biopsies from glioma patients. Molecular testing may facilitate the interpretation of nondiagnostic biopsies in patients with a suspected glioma.
Assuntos
Neoplasias Encefálicas/genética , Glioma/genética , Isocitrato Desidrogenase/genética , Mutação/genética , Regiões Promotoras Genéticas/genética , Telomerase/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biópsia , Neoplasias Encefálicas/patologia , Feminino , Glioma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Estudos RetrospectivosRESUMO
BACKGROUND AND OBJECTIVE: Genomic duplications and fusion involving BRAF and KIAA1549 that create fusion proteins with constitutive B-RAF kinase activity are a hallmark of pilocytic astrocytomas (PAs). The detection of KIAA1549-BRAF fusion transcripts is of paramount importance to classify these tumors and to identify patients who could benefit from BRAF inhibitors. In a clinical setting, the available material for molecular analysis from these pediatric tumors is often limited to formalin-fixed paraffin-embedded (FFPE) tissue. The aim of the present study was to develop a new method to detect the three most frequent KIAA1549-BRAF fusion transcripts, 15-9, 16-11, and 16-9, where numbers refer to the exons fused together, using a FFPE-compatible multiplex quantitative reverse transcription polymerase chain reaction (qRT-PCR). METHODS: We compared performance of the assay to a reference singleplex method on a collection of 46 FFPE PAs. RESULTS: The results showed that both methods are comparable. The multiplex method had an overall 97% sensitivity and 100% specificity compared to the singleplex method, and agreement between the two techniques was almost perfect (Cohen's kappa: 0.97). There was no evidence of a significant difference between the qRT-PCR efficiencies of the multiplex technique and of the singleplex assay for all fusion transcripts and for GAPDH, the latter used as a reference gene. The multiplex method consumed four times less complementary DNA (cDNA), cost less, and required half the hands-on technical time. CONCLUSION: The results show that it could be beneficial to implement the multiplex method in a clinical setting, where samples presenting low quantity of degraded RNA are not unusual.
Assuntos
Astrocitoma/genética , Reação em Cadeia da Polimerase Multiplex , Proteínas de Fusão Oncogênica/genética , Reação em Cadeia da Polimerase em Tempo Real , Adolescente , Astrocitoma/diagnóstico , Biópsia , Análise Custo-Benefício , Feminino , Frequência do Gene , Humanos , Masculino , Reação em Cadeia da Polimerase Multiplex/métodos , Gradação de Tumores , Inclusão em Parafina , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reprodutibilidade dos TestesRESUMO
Pyruvate dehydrogenase (PDH) complex deficiency is a major cause of lactic acidosis and Leigh's encephalomyelopathies in infancy and childhood, resulting in early death in the majority of patients. Most of the molecular defects have been localized in the coding regions of the E1alpha PDH gene. Recently, we identified a novel mutation of the E1alpha PDH gene in a patient with an encephalopathy and lactic acidosis. This mutation, located downstream of exon 7, activates a cryptic splice donor and leads to the retention of intronic sequences. Here, we demonstrate that the mutation results in an increased binding of the SR protein SC35. Consistently, ectopic overexpression of this splicing factor enhanced the use of the cryptic splice site, whereas small interfering RNA-mediated reduction of the SC35 protein levels in primary fibroblasts from the patient resulted in the almost complete disappearance of the aberrantly spliced E1alpha PDH mRNA. Our findings open the exciting prospect for a novel therapy of an inherited disease by altering the level of a specific splicing factor.