Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Ecol ; 31(14): 3761-3783, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35593305

RESUMO

Major seasonal community reorganizations and associated biomass variations are landmarks of plankton ecology. However, the processes of plankton community turnover rates have not been fully elucidated so far. Here, we analyse patterns of planktonic protist community succession in temperate latitudes, based on quantitative taxonomic data from both microscopy counts (cells >10 µm) and ribosomal DNA metabarcoding (size fraction >3 µm, 18S rRNA gene) from plankton samples collected bimonthly over 8 years (2009-2016) at the SOMLIT-Astan station (Roscoff, Western English Channel). Based on morphology, diatoms were clearly the dominating group all year round and over the study period. Metabarcoding uncovered a wider diversity spectrum and revealed the prevalence of Dinophyceae and diatoms but also of Cryptophyta, Chlorophyta, Cercozoa, Syndiniales and Ciliophora in terms of read counts and or richness. The use of morphological and molecular analyses in combination allowed improving the taxonomic resolution and to identify the sequence of the dominant species and OTUs (18S V4 rDNA-derived taxa) that drive annual plankton successions. We detected that some of these dominant OTUs were benthic as a result of the intense tidal mixing typical of the French coasts in the English Channel. Our analysis of the temporal structure of community changes point to a strong seasonality and resilience. The temporal structure of environmental variables (especially Photosynthetic Active Radiation, temperature and macronutrients) and temporal structures generated by species life cycles and or species interactions, are key drivers of the observed cyclic annual plankton turnover.


Assuntos
Biodiversidade , Diatomáceas , Diatomáceas/genética , Eucariotos/genética , Filogenia , Plâncton/genética , RNA Ribossômico 18S/genética , Estações do Ano
2.
Sci Rep ; 9(1): 20153, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882779

RESUMO

Shelf seas play an important role in the global carbon cycle, absorbing atmospheric carbon dioxide (CO2) and exporting carbon (C) to the open ocean and sediments. The magnitude of these processes is poorly constrained, because observations are typically interpolated over multiple years. Here, we used 298500 observations of CO2 fugacity (fCO2) from a single year (2015), to estimate the net influx of atmospheric CO2 as 26.2 ± 4.7 Tg C yr-1 over the open NW European shelf. CO2 influx from the atmosphere was dominated by influx during winter as a consequence of high winds, despite a smaller, thermally-driven, air-sea fCO2 gradient compared to the larger, biologically-driven summer gradient. In order to understand this climate regulation service, we constructed a carbon-budget supplemented by data from the literature, where the NW European shelf is treated as a box with carbon entering and leaving the box. This budget showed that net C-burial was a small sink of 1.3 ± 3.1 Tg C yr-1, while CO2 efflux from estuaries to the atmosphere, removed the majority of river C-inputs. In contrast, the input from the Baltic Sea likely contributes to net export via the continental shelf pump and advection (34.4 ± 6.0 Tg C yr-1).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA