Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anim Genet ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644700

RESUMO

During the last 60 years many inherited traits in domestic outbred cats were selected and retained giving birth to new breeds characterised by singular coat or morphological phenotypes. Among them, minimal white spotting associated with blue eyes was selected by feline breeders to create the Altai, Topaz, and Celestial breeds. Various established breeds also introduced this trait in their lineages. The trait, that was confirmed as autosomal dominant by breeding data, was first described in domestic cats from Kazakhstan and Russia, in British shorthair and British longhair from Russia, and in Maine Coon cats from the Netherlands, suggesting different founding effects. Using a genome-wide association study we identified a single region on chromosome C1 that was associated with the minimal white spotting and blue eyes phenotype (also called DBE by breeders for dominant blue eyes) in the French Celestial breed. Within that region we identified Paired Box 3 (PAX3) as the strongest candidate gene, since PAX3 is a key regulator of MITF (Melanocyte-Inducing Transcription Factor) and PAX3 variants have been previously identified in various species showing white spotting with or without blue eyes including the mouse and the horse. Whole genome sequencing of a Celestial cat revealed an endogenous retrovirus LTR (long terminal repeat) insertion within PAX3 intron 4 known to contain regulatory sequences (conserved non-coding element [CNE]) involved in PAX3 expression. The insertion is in the vicinity of CNE2 and CNE3. All 52 Celestial and Celestial-mixed cats with a DBE phenotype presented the insertion, that was absent in their 22 non-DBE littermates and in 87 non-DBE cats from various breeds. The outbred Celestial founder was also heterozygous for the insertion. Additionally, the variant was found in nine DBE Maine Coon cats related to the Celestial founder and four DBE Siberian cats with an uncertain origin. Segregation of the variant in the Celestial breed is consistent with dominant inheritance and does not appear to be associated with deafness. We propose that this NC_018730.3:g.206974029_206974030insN[395] variant represents the DBECEL (Celestial Dominant Blue Eyes) allele in the domestic cat.

2.
Anim Genet ; 54(1): 73-77, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36308003

RESUMO

Congenital coat-colour-related deafness is common among certain canine breeds especially those exhibiting extreme white spotting or merle patterning. We identified a non-syndromic deafness in Beauceron dogs characterised by a bilateral hearing loss in puppies that is not linked to coat colour. Pedigree analysis suggested an autosomal recessive transmission. By combining homozygosity mapping with whole genome sequencing and variant filtering in affected dogs we identified a CDH23:c.700C>T variant. The variant, located in the CHD23 (cadherin related 23) gene, was predicted to induce a CDH23:p.(Pro234Ser) change in the protein. Proline-234 of CDH23 protein is highly conserved across different vertebrate species. In silico tools predicted the CDH23:p.(Pro234Ser) change to be deleterious. CDH23 encodes a calcium-dependent transmembrane glycoprotein localised near the tips of hair-cell stereocilia in the mammalian inner ear. Intact function of these cilia is mandatory for the transformation of the acoustical wave into a neurological signal, leading to sensorineural deafness when impaired. By genotyping a cohort of 90 control Beauceron dogs sampled in France, we found a 3.3% carrier frequency. The CDH23:c.[700C>T] allele is easily detectable with a genetic test to avoid at-risk matings.


Assuntos
Surdez , Doenças do Cão , Perda Auditiva Neurossensorial , Cães , Animais , Mutação , Perda Auditiva Neurossensorial/genética , Surdez/genética , Surdez/veterinária , Mutação de Sentido Incorreto , Alelos , Mamíferos/genética , Doenças do Cão/genética
3.
Anim Genet ; 53(5): 715-718, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35703390

RESUMO

In the British feline breed a golden coat modification, called light-gold, akita or copper, was reported by breeders during the 2010s. This modification restricted eumelanin to the tip of the tail and hairs showed a wideband modification. Pedigree analyses revealed an autosomal recessive inheritance pattern. A single candidate region was identified using a genome-wide association study. Within that region, we identified CORIN (Corin, serine peptidase) as the strongest candidate gene, since two CORIN variants have previously been identified in Siberian cats with a golden phenotype. A homozygous CORIN:c.2425C>T nonsense variant was identified in copper British cats. Segregation of the variant was consistent with recessive inheritance. This nonsense CORIN:c.2425C>T variant, located in CORIN exon 19, was predicted to produce a truncated CORIN protein - CORIN:p.(Arg809Ter) - that would lack part of the scavenger receptor domain and the trypsine-like serine protease catalytic domain. All 30 copper cats were T/T homozygous for the variant, which was also found in 20 C/T heterozygous British control cats but was absent in 340 cats from the 99 Lives dataset. Finally, genotyping of 218 cats from 12 breeds failed to identify carriers in cats from other breeds. We propose that this third CORIN:c.2425C>T variant represents the wbBSH (British recessive wideband) allele in the domestic cat.


Assuntos
Cobre , Estudo de Associação Genômica Ampla , Alelos , Animais , Gatos/genética , Homozigoto , Fenótipo
4.
Anim Genet ; 53(5): 709-712, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35864734

RESUMO

Hereditary ataxias are common among canine breeds with various molecular etiology. We identified a hereditary ataxia in young-adult Australian Shepherd dogs characterized by uncoordinated movements and spasticity, worsening progressively and leading to inability to walk. Pedigree analysis suggested an autosomal recessive transmission. By whole genome sequencing and variant filtering of an affected dog we identified a PNPLA8:c.1169_1170dupTT variant. This variant, located in PNPLA8 (Patatin Like Phospholipase Domain Containing 8), was predicted to induce a PNPLA8:p.(His391PhefsTer394) frameshift, leading to a premature stop codon in the protein. The truncated protein was predicted to lack the functional patatin catalytic domain of PNPLA8, a calcium-independent phospholipase. PNPLA8 is known to be essential for maintaining mitochondrial energy production through tailoring mitochondrial membrane lipid metabolism and composition. The Australian Shepherd ataxia shares molecular and clinical features with Weaver syndrome in cattle and the mitochondrial-related neurodegeneration associated with PNPLA8 loss-of-function variants in humans. By genotyping a cohort of 85 control Australian Shepherd dogs sampled in France, we found a 4.7% carrier frequency. The PNPLA8:c.[1169_1170dupTT] allele is easily detectable with a genetic test to avoid at-risk matings.


Assuntos
Doenças dos Bovinos , Doenças do Cão , Degenerações Espinocerebelares , Animais , Austrália , Bovinos , Doenças dos Bovinos/genética , Doenças do Cão/genética , Cães , Mutação da Fase de Leitura , Humanos , Linhagem , Fosfolipases/genética
5.
Anim Genet ; 51(4): 631-633, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32452546

RESUMO

In dogs and cats, unusual coat colour phenotypes may result from various phenomena, including chimerism. In the domestic cat, the tortoiseshell coat colour that combines red and non-red hairs is the most obvious way to identify chimeras in males. Several cases of tortoiseshell males have been reported, some of which were diagnosed as chimeras without any molecular confirmation. Here, we report the case of a female feline chimera identified thanks to its coat colour and confirmed through DNA profiling and a coat colour test. We ruled out the hypothesis of mosaicism and aneuploidy. All the data were consistent with a natural case of female chimerism.


Assuntos
Gatos/genética , Quimerismo/veterinária , Cabelo/fisiologia , Animais , Cor , Impressões Digitais de DNA/veterinária , Feminino , Pigmentação/genética
6.
PLoS Genet ; 12(9): e1006289, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27589388

RESUMO

Syncytins are envelope genes from endogenous retroviruses, "captured" for a role in placentation. They mediate cell-cell fusion, resulting in the formation of a syncytium (the syncytiotrophoblast) at the fetomaternal interface. These genes have been found in all placental mammals in which they have been searched for. Cell-cell fusion is also pivotal for muscle fiber formation and repair, where the myotubes are formed from the fusion of mononucleated myoblasts into large multinucleated structures. Here we show, taking advantage of mice knocked out for syncytins, that these captured genes contribute to myoblast fusion, with a >20% reduction in muscle mass, mean muscle fiber area and number of nuclei per fiber in knocked out mice for one of the two murine syncytin genes. Remarkably, this reduction is only observed in males, which subsequently show muscle quantitative traits more similar to those of females. In addition, we show that syncytins also contribute to muscle repair after cardiotoxin-induced injury, with again a male-specific effect on the rate and extent of regeneration. Finally, ex vivo experiments carried out on murine myoblasts demonstrate the direct involvement of syncytins in fusion, with a >40% reduction in fusion index upon addition of siRNA against both syncytins. Importantly, similar effects are observed with primary myoblasts from sheep, dog and human, with a 20-40% reduction upon addition of siRNA against the corresponding syncytins. Altogether, these results show a direct contribution of the fusogenic syncytins to myogenesis, with a demonstrated male-dependence of the effect in mice, suggesting that these captured genes could be responsible for the muscle sexual dimorphism observed in placental mammals.


Assuntos
Produtos do Gene env/genética , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Proteínas da Gravidez/genética , Animais , Diferenciação Celular/genética , Cães , Retrovirus Endógenos/genética , Feminino , Técnicas de Inativação de Genes , Produtos do Gene env/metabolismo , Humanos , Masculino , Mamíferos , Camundongos , Músculo Esquelético/crescimento & desenvolvimento , Proteínas da Gravidez/metabolismo , RNA Interferente Pequeno/genética , Regeneração/genética , Caracteres Sexuais
7.
Nature ; 484(7392): 120-4, 2012 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-22425998

RESUMO

The basic unit of skeletal muscle in all metazoans is the multinucleate myofibre, within which individual nuclei are regularly positioned. The molecular machinery responsible for myonuclear positioning is not known. Improperly positioned nuclei are a hallmark of numerous diseases of muscle, including centronuclear myopathies, but it is unclear whether correct nuclear positioning is necessary for muscle function. Here we identify the microtubule-associated protein ensconsin (Ens)/microtubule-associated protein 7 (MAP7) and kinesin heavy chain (Khc)/Kif5b as essential, evolutionarily conserved regulators of myonuclear positioning in Drosophila and cultured mammalian myotubes. We find that these proteins interact physically and that expression of the Kif5b motor domain fused to the MAP7 microtubule-binding domain rescues nuclear positioning defects in MAP7-depleted cells. This suggests that MAP7 links Kif5b to the microtubule cytoskeleton to promote nuclear positioning. Finally, we show that myonuclear positioning is physiologically important. Drosophila ens mutant larvae have decreased locomotion and incorrect myonuclear positioning, and these phenotypes are rescued by muscle-specific expression of Ens. We conclude that improper nuclear positioning contributes to muscle dysfunction in a cell-autonomous fashion.


Assuntos
Núcleo Celular/metabolismo , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Animais , Compartimento Celular/genética , Linhagem Celular , Polaridade Celular/genética , Células Cultivadas , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Cinesinas/química , Cinesinas/deficiência , Cinesinas/genética , Larva/citologia , Larva/genética , Larva/metabolismo , Locomoção/genética , Locomoção/fisiologia , Camundongos , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Especificidade de Órgãos , Fenótipo , Ligação Proteica , Estrutura Terciária de Proteína
8.
Anim Genet ; 53(4): 543-545, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35574714
9.
EMBO Rep ; 13(8): 741-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22732842

RESUMO

Cells actively position their nucleus within the cytoplasm. One striking example is observed during skeletal myogenesis. Differentiated myoblasts fuse to form a multinucleated myotube with nuclei positioned in the centre of the syncytium by an unknown mechanism. Here, we describe that the nucleus of a myoblast moves rapidly after fusion towards the central myotube nuclei. This movement is driven by microtubules and dynein/dynactin complex, and requires Cdc42, Par6 and Par3. We found that Par6ß and dynactin accumulate at the nuclear envelope of differentiated myoblasts and myotubes, and this accumulation is dependent on Par6 and Par3 proteins but not on microtubules. These results suggest a mechanism where nuclear movement after fusion is driven by microtubules that emanate from one nucleus that are pulled by dynein/dynactin complex anchored to the nuclear envelope of another nucleus.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Moléculas de Adesão Celular/metabolismo , Núcleo Celular/metabolismo , Dineínas/metabolismo , Microtúbulos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Animais , Proteínas de Ciclo Celular , Fusão Celular , Linhagem Celular , Complexo Dinactina , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Biológicos , Fibras Musculares Esqueléticas/citologia , Mioblastos/citologia , Mioblastos/metabolismo , Membrana Nuclear/metabolismo , Transporte Proteico
11.
Med Sci (Paris) ; 39 Hors série n° 1: 54-57, 2023 Nov.
Artigo em Francês | MEDLINE | ID: mdl-37975771

RESUMO

Striated skeletal muscles are made of post-mitotic and multinucleated cells: muscle fibers, in which nuclei are regularly spaced and positioned at their periphery. The specific positioning of nuclei, necessary for the proper functioning of the muscle, is mainly regulated by the microtubule network and partner proteins. Many muscular pathologies present alterations in both the organization of the microtubule network and nuclear positioning, as observed in Duchenne Muscular Dystrophy, centronuclear myopathies or various neuromuscular diseases. The importance of the microtubule interactome and its influence in the maintenance of skeletal muscle homeostasis is a key issue in understanding muscle diseases.


Title: Réseau microtubulaire et fonctionnalité du muscle strié squelettique. Abstract: Les muscles striés squelettiques sont constitués de cellules post-mitotiques et multinucléées : les fibres musculaires, dans lesquelles les noyaux sont régulièrement espacés et positionnés à leur périphérie. Ce positionnement spécifique des noyaux, nécessaire au bon fonctionnement du muscle, est essentiellement régulé par le réseau microtubulaire et ses partenaires protéiques. De nombreuses pathologies musculaires présentent une altération à la fois de l'organisation du réseau microtubulaire et du positionnement nucléaire, comme observé dans la Dystrophie Musculaire de Duchenne, les myopathies centronucléaires ou certaines maladies neuromusculaires. L'importance de l'interactome microtubulaire et son influence dans le maintien de l'homéostasie du muscle strié squelettique est un enjeu capital dans la compréhension des pathologies musculaires.


Assuntos
Distrofia Muscular de Duchenne , Miopatias Congênitas Estruturais , Humanos , Músculo Esquelético/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Distrofia Muscular de Duchenne/patologia , Núcleo Celular/metabolismo , Miopatias Congênitas Estruturais/patologia
12.
Bioengineering (Basel) ; 10(12)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38136009

RESUMO

Stem cells, particularly human iPSCs, constitute a powerful tool for tissue engineering, notably through spheroid and organoid models. While the sensitivity of stem cells to the viscoelastic properties of their direct microenvironment is well-described, stem cell differentiation still relies on biochemical factors. Our aim is to investigate the role of the viscoelastic properties of hiPSC spheroids' direct environment on their fate. To ensure that cell growth is driven only by mechanical interaction, bioprintable alginate-gelatin hydrogels with significantly different viscoelastic properties were utilized in differentiation factor-free culture medium. Alginate-gelatin hydrogels of varying concentrations were developed to provide 3D environments of significantly different mechanical properties, ranging from 1 to 100 kPa, while allowing printability. hiPSC spheroids from two different cell lines were prepared by aggregation (⌀ = 100 µm, n > 1 × 104), included and cultured in the different hydrogels for 14 days. While spheroids within dense hydrogels exhibited limited growth, irrespective of formulation, porous hydrogels prepared with a liquid-liquid emulsion method displayed significant variations of spheroid morphology and growth as a function of hydrogel mechanical properties. Transversal culture (adjacent spheroids-laden alginate-gelatin hydrogels) clearly confirmed the separate effect of each hydrogel environment on hiPSC spheroid behavior. This study is the first to demonstrate that a mechanically modulated microenvironment induces diverse hiPSC spheroid behavior without the influence of other factors. It allows one to envision the combination of multiple formulations to create a complex object, where the fate of hiPSCs will be independently controlled by their direct microenvironment.

13.
Artigo em Inglês | MEDLINE | ID: mdl-36522170

RESUMO

OBJECTIVES: Rippling muscle disease (RMD) is characterized by muscle stiffness, muscle hypertrophy, and rippling muscle induced by stretching or percussion. Hereditary RMD is due to sequence variants in the CAV3 and PTRF/CAVIN1 genes encoding Caveolin-3 or Cavin-1, respectively; a few series of patients with acquired autoimmune forms of RMD (iRMD) associated with AChR antibody-positive myasthenia gravis and/or thymoma have also been described. Recently, MURC/caveolae-associated protein 4 (Cavin-4) autoantibody was identified in 8 of 10 patients without thymoma, highlighting its potential both as a biomarker and as a triggering agent of this pathology. Here, we report the case of a patient with iRMD-AchR antibody negative associated with thymoma. METHODS: We suspected a paraneoplastic origin and investigated the presence of specific autoantibodies targeting muscle antigens through a combination of Western blotting and affinity purification coupled with mass spectrometry-based proteomic approaches. RESULTS: We identified circulating MURC/Cavin-4 autoantibodies and found strong similarities between histologic features of the patient's muscle and those commonly reported in caveolinopathies. Strikingly, MURC/Cavin-4 autoantibody titer strongly decreased after tumor resection and immunotherapy correlating with complete disappearance of the rippling phenotype and full patient remission. DISCUSSION: MURC/Cavin-4 autoantibodies may play a pathogenic role in paraneoplastic iRMD associated with thymoma.


Assuntos
Miastenia Gravis , Timoma , Neoplasias do Timo , Humanos , Timoma/complicações , Autoanticorpos , Proteômica , Miastenia Gravis/complicações , Miastenia Gravis/diagnóstico , Neoplasias do Timo/complicações , Neoplasias do Timo/diagnóstico
14.
Nat Commun ; 14(1): 3346, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291092

RESUMO

Despite advances in cardioprotection, new therapeutic strategies capable of preventing ischemia-reperfusion injury of patients are still needed. Here, we discover that sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA2) phosphorylation at serine 663 is a clinical and pathophysiological event of cardiac function. Indeed, the phosphorylation level of SERCA2 at serine 663 is increased in ischemic hearts of patients and mouse. Analyses on different human cell lines indicate that preventing serine 663 phosphorylation significantly increases SERCA2 activity and protects against cell death, by counteracting cytosolic and mitochondrial Ca2+ overload. By identifying the phosphorylation level of SERCA2 at serine 663 as an essential regulator of SERCA2 activity, Ca2+ homeostasis and infarct size, these data contribute to a more comprehensive understanding of the excitation/contraction coupling of cardiomyocytes and establish the pathophysiological role and the therapeutic potential of SERCA2 modulation in acute myocardial infarction, based on the hotspot phosphorylation level of SERCA2 at serine 663 residue.


Assuntos
Infarto do Miocárdio , Miocárdio , Animais , Humanos , Camundongos , Cálcio/metabolismo , Homeostase , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Fosforilação , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
15.
Bio Protoc ; 12(11)2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35799900

RESUMO

Our ability to move and breathe requires an efficient communication between nerve and muscle that mainly takes place at the neuromuscular junctions (NMJs), a highly specialized synapse that links the axon of a motor neuron to a muscle fiber. When NMJs or axons are disrupted, the control of muscle fiber contraction is lost and muscle are paralyzed. Understanding the adaptation of the neuromuscular system to permanent or transient denervation is a challenge to understand the pathophysiology of many neuromuscular diseases. There is still a lack of in vitro models that fully recapitulate the in vivo situation, and in vivo denervation, carried out by transiently or permanently severing the nerve afferent to a muscle, remains a method of choice to evaluate reinnervation and/or the consequences of the loss of innervation. We describe here a simple surgical intervention performed at the hip zone to expose the sciatic nerve in order to obtain either permanent denervation (nerve-cut) or transient and reversible denervation (nerve-crush). These two methods provide a convenient in vivo model to study adaptation to denervation. Graphical abstract.

16.
Acta Biomater ; 140: 324-337, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34843951

RESUMO

Injectable hydrogels that polymerize directly in vivo hold significant promises in clinical settings to support the repair of damaged or failing tissues. Existing systems that allow cellular and tissue ingrowth after injection are limited because of deficient porosity and lack of oxygen and nutrient diffusion inside the hydrogels. Here is reported for the first time an in vivo injectable hydrogel in which the porosity does not pre-exist but is formed concomitantly with its in situ injection by a controlled effervescent reaction. The hydrogel tailorable crosslinking, through the reaction of polyethylene glycol with lysine dendrimers, allows the mixing and injection of precursor solutions from a dual-chamber syringe while entrapping effervescently generated CO2 bubbles to form highly interconnected porous networks. The resulting structures allow preserving modular mechanical properties (from 12.7 ± 0.9 to 29.9 ± 1.7 kPa) while being cytocompatible and conducive to swift cellular attachment, proliferation, in-depth infiltration and extracellular matrix deposition. Most importantly, the subcutaneously injected porous hydrogels are biocompatible, undergo tissue remodeling and support extensive neovascularisation, which is of significant advantage for the clinical repair of damaged tissues. Thus, the porosity and injectability of the described effervescent hydrogels, together with their biocompatibility and versatility of mechanical properties, open broad perspectives for various regenerative medicine or material applications, since effervescence could be combined with a variety of other systems of swift crosslinking. STATEMENT OF SIGNIFICANCE: A major challenge in hydrogel design is the synthesis of injectable formulations allowing easy handling and dispensing in the site of interest. However, the lack of adequate porosity inside hydrogels prevent cellular entry and, therefore, vascularization and tissue ingrowth, limiting the regenerative potential of a vast majority of injectable hydrogels. We describe here the development of an acellular hydrogel that can be injected directly in situ while allowing the simultaneous formation of porosity. Such hydrogel would facilitate handling through injection while providing a porous structure supporting vascularization and tissue ingrowth.


Assuntos
Hidrogéis , Medicina Regenerativa , Materiais Biocompatíveis/química , Matriz Extracelular/química , Hidrogéis/química , Hidrogéis/farmacologia , Porosidade , Engenharia Tecidual/métodos
17.
Elife ; 102021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34448452

RESUMO

Skeletal muscles are composed of hundreds of multinucleated muscle fibers (myofibers) whose myonuclei are regularly positioned all along the myofiber's periphery except the few ones clustered underneath the neuromuscular junction (NMJ) at the synaptic zone. This precise myonuclei organization is altered in different types of muscle disease, including centronuclear myopathies (CNMs). However, the molecular machinery regulating myonuclei position and organization in mature myofibers remains largely unknown. Conversely, it is also unclear how peripheral myonuclei positioning is lost in the related muscle diseases. Here, we describe the microtubule-associated protein, MACF1, as an essential and evolutionary conserved regulator of myonuclei positioning and maintenance, in cultured mammalian myotubes, in Drosophila muscle, and in adult mammalian muscle using a conditional muscle-specific knockout mouse model. In vitro, we show that MACF1 controls microtubules dynamics and contributes to microtubule stabilization during myofiber's maturation. In addition, we demonstrate that MACF1 regulates the microtubules density specifically around myonuclei, and, as a consequence, governs myonuclei motion. Our in vivo studies show that MACF1 deficiency is associated with alteration of extra-synaptic myonuclei positioning and microtubules network organization, both preceding NMJ fragmentation. Accordingly, MACF1 deficiency results in reduced muscle excitability and disorganized triads, leaving voltage-activated sarcoplasmic reticulum Ca2+ release and maximal muscle force unchanged. Finally, adult MACF1-KO mice present an improved resistance to fatigue correlated with a strong increase in mitochondria biogenesis.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas dos Microfilamentos/metabolismo , Microtúbulos/metabolismo , Mitocôndrias Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Mioblastos Esqueléticos/metabolismo , Junção Neuromuscular/metabolismo , Biogênese de Organelas , Animais , Linhagem Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/ultraestrutura , Acoplamento Excitação-Contração , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Microtúbulos/genética , Microtúbulos/ultraestrutura , Mitocôndrias Musculares/genética , Mitocôndrias Musculares/ultraestrutura , Fadiga Muscular , Fibras Musculares Esqueléticas/ultraestrutura , Força Muscular , Mioblastos Esqueléticos/ultraestrutura , Junção Neuromuscular/genética , Junção Neuromuscular/ultraestrutura , Fatores de Tempo
18.
Clin Transl Med ; 11(3): e319, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33784018

RESUMO

BACKGROUND: Severe ventricular rhythm disturbances are the hallmark of arrhythmogenic cardiomyopathy (ACM), and are often explained by structural conduction abnormalities. However, comprehensive investigations of ACM cell electrical instability are lacking. This study aimed to elucidate early electrical myogenic signature of ACM. METHODS: We investigated a 41-year-old ACM patient with a missense mutation (c.394C>T) in the DSC2 gene, which encodes desmocollin 2. Pathogenicity of this variant was confirmed using a zebrafish DSC2 model system. Control and DSC2 patient-derived pluripotent stem cells were reprogrammed and differentiated into cardiomyocytes (hiPSC-CM) to examine the specific electromechanical phenotype and its modulation by antiarrhythmic drugs (AADs). Samples of the patient's heart and hiPSC-CM were examined to identify molecular and cellular alterations. RESULTS: A shortened action potential duration was associated with reduced Ca2+ current density and increased K+ current density. This finding led to the elucidation of previously unknown abnormal repolarization dynamics in ACM patients. Moreover, the Ca2+ mobilised during transients was decreased, and the Ca2+ sparks frequency was increased. AAD testing revealed the following: (1) flecainide normalised Ca2+ transients and significantly decreased Ca2+ spark occurrence and (2) sotalol significantly lengthened the action potential and normalised the cells' contractile properties. CONCLUSIONS: Thorough analysis of hiPSC-CM derived from the DSC2 patient revealed abnormal repolarization dynamics, prompting the discovery of a short QT interval in some ACM patients. Overall, these results confirm a myogenic origin of ACM electrical instability and provide a rationale for prescribing class 1 and 3 AADs in ACM patients with increased ventricular repolarization reserve.


Assuntos
Antiarrítmicos/uso terapêutico , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/genética , Desmocolinas/genética , Eletrocardiografia/métodos , Canais Iônicos/genética , Adulto , Animais , Arritmias Cardíacas/fisiopatologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Mutação de Sentido Incorreto/genética , Peixe-Zebra
19.
Pigment Cell Melanoma Res ; 33(6): 814-825, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32558164

RESUMO

In the feline Donskoy breed, a phenotype that breeders call "pink-eye," with associated light-brown skin, yellow irises and red-eye effect, has been described. Genealogical data indicated an autosomal recessive inheritance pattern. A single candidate region was identified by genome-wide association study and SNP-based homozygosity mapping. Within that region, we further identified HPS5 (HPS5 Biogenesis Of Lysosomal Organelles Complex 2 Subunit 2) as a strong candidate gene, since HPS5 variants have been identified in humans and animals with Hermansky-Pudlak syndrome 5 or oculocutaneous albinism. A homozygous c.2571-1G>A acceptor splice-site variant located in intron 16 of HPS5 was identified in pink-eye cats. Segregation of the variant was 100% consistent with the inheritance pattern. Genotyping of 170 cats from 19 breeds failed to identify a single carrier in non-Donskoy cats. The c.2571-1G>A variant leads to HPS5 exon-16 splicing that is predicted to produce a 52 amino acids in-frame deletion in the protein. These results support an association of the pink-eye phenotype with the c.2571-1G>A variant. The pink-eye Donskoy cat extends the panel of reported HPS5 variants and offers an opportunity for in-depth exploration of the phenotypic consequences of a new HPS5 variant.


Assuntos
Albinismo Oculocutâneo/genética , Proteínas de Transporte/genética , Sítios de Splice de RNA/genética , Alelos , Animais , Sequência de Bases , Gatos , Cromossomos de Mamíferos/genética , Modelos Animais de Doenças , Éxons/genética , Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Homozigoto , Humanos , Camundongos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Splicing de RNA/genética
20.
J Cell Biol ; 219(8)2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32697819

RESUMO

Microtubules (MTs) are known to be post-translationally modified at the neuromuscular junction (NMJ), hence increasing their stability. To date however, the function(s) of the dynamic MT network and its relative stability in the formation and maintenance of NMJs remain poorly described. Stabilization of the MT is dependent in part on its acetylation status, and HDAC6 is capable of reversing this post-translational modification. Here, we report that HDAC6 preferentially accumulates at NMJs and that it contributes to the organization and the stability of NMJs. Indeed, pharmacological inhibition of HDAC6 protects against MT disorganization and reduces the size of acetylcholine receptor (AChR) clusters. Moreover, the endogenous HDAC6 inhibitor paxillin interacts with HDAC6 in skeletal muscle cells, colocalizes with AChR aggregates, and regulates the formation of AChR. Our findings indicate that the focal insertion of AChRs into the postsynaptic membrane is regulated by stable MTs and highlight how an MT/HDAC6/paxillin axis participates in the regulation of AChR insertion and removal to control the structure of NMJs.


Assuntos
Desacetilase 6 de Histona/metabolismo , Microtúbulos/enzimologia , Fibras Musculares Esqueléticas/enzimologia , Junção Neuromuscular/enzimologia , Receptores Colinérgicos/metabolismo , Membranas Sinápticas/enzimologia , Tubulina (Proteína)/metabolismo , Acetilação , Animais , Linhagem Celular , Desacetilase 6 de Histona/antagonistas & inibidores , Desacetilase 6 de Histona/genética , Inibidores de Histona Desacetilases/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microtúbulos/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Junção Neuromuscular/efeitos dos fármacos , Paxilina/metabolismo , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Membranas Sinápticas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA