Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Entropy (Basel) ; 21(7)2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-33267353

RESUMO

The paper addresses an important long-standing question in regards to the energy efficiency renovation of existing buildings, in this case hotels, towards nearly zero-energy (nZEBs) status. The renovation of existing hotels to achieve a nearly zero-energy (nZEBs) performance is one of the forefront goals of EU's energy policy for 2050. The achievement of nZEBs target for hotels is necessary not only to comply with changing regulations and legislations, but also to foster competitiveness to secure new funding. Indeed, the nZEB hotel status allows for the reduction of operating costs and the increase of energy security, meeting the market and guests' expectations. Actually, there is not a set national value of nZEBs for hotels to be attained, despite the fact that hotels are among the most energy-intensive buildings. This paper presents the case study of the energy retrofit of an existing historical hotel located in southern Italy (Syracuse) in order to achieve nZEBs status. Starting from the energy audit, the paper proposes a step-by-step approach to nZEBs performance, with a perspective on the costs, in order to identify the most effective energy solutions. Such an approach allows useful insights regarding energy and economic-financial strategies for achieving nZEBs standards to highlighted. Moreover, the results of this paper provide, to stakeholders, useful information for quantifying the technical convenience and economic profitability to reach an nZEBs target in order to prevent the expenses necessary by future energy retrofit programs.

2.
Front Chem ; 8: 200, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32373574

RESUMO

Carbon-based top electrodes for hole-transporting-layer-free perovskite solar cells (PSCs) were made by hot press (HP) transfer of a free-standing carbon-aluminum foil at 100°C and at a pressure of 0.1 MPa on a methylammonium lead iodide (MAPbI3) layer. Under these conditions, the perovskite surface was preserved from interaction with the solvent. Over a timescale of 90 days, HP-PSCs were systematically compared to reference cells with carbon-based top electrodes deposited by doctor blading (DB). We found that all the photovoltaic parameters recorded in HP-PSCs during time under ambient conditions settled on values systematically higher than those measured in the reference DB-PSCs, with efficiency stabilized at around 6% within the first few measurements. On the other hand, in DB-PSCs, a long-lasting (~14 days) degrading transient of the performances was observed, with a loss of efficiency from an initial ~8% to ~3%. Moreover, in HP-PSCs, a systematic day-by-day recovery of the efficiency after operation was observed (Δ~2%) by leaving the cell under open circuit, a nitrogen environment, and dark conditions. Noteworthily, a full recovery of all the parameters was observed at the end of the experiment, while DB-PSCs showed only a partial recovery under the same conditions. Hence, the complete release of solvent from the carbon contact, before an interface is established with the perovskite layer, offers a definite advantage through the long period of operation in preventing irreversible degradation. Our findings indeed highlight the crucial role of the interfaces and their feasible preservation under nitrogen atmosphere.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA