Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 92(1): 246-256, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38469671

RESUMO

PURPOSE: To reduce the inter-scanner variability of diffusion MRI (dMRI) measures between scanners from different vendors by developing a vendor-neutral dMRI pulse sequence using the open-source vendor-agnostic Pulseq platform. METHODS: We implemented a standard EPI based dMRI sequence in Pulseq. We tested it on two clinical scanners from different vendors (Siemens Prisma and GE Premier), systematically evaluating and comparing the within- and inter-scanner variability across the vendors, using both the vendor-provided and Pulseq dMRI sequences. Assessments covered both a diffusion phantom and three human subjects, using standard error (SE) and Lin's concordance correlation to measure the repeatability and reproducibility of standard DTI metrics including fractional anisotropy (FA) and mean diffusivity (MD). RESULTS: Identical dMRI sequences were executed on both scanners using Pulseq. On the phantom, the Pulseq sequence showed more than a 2.5× reduction in SE (variability) across Siemens and GE scanners. Furthermore, Pulseq sequences exhibited markedly reduced SE in-vivo, maintaining scan-rescan repeatability while delivering lower variability in FA and MD (more than 50% reduction in cortical/subcortical regions) compared to vendor-provided sequences. CONCLUSION: The Pulseq diffusion sequence reduces the cross-scanner variability for both phantom and in-vivo data, which will benefit multi-center neuroimaging studies and improve the reproducibility of neuroimaging studies.


Assuntos
Encéfalo , Imagem de Difusão por Ressonância Magnética , Imagens de Fantasmas , Humanos , Reprodutibilidade dos Testes , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Anisotropia , Algoritmos , Masculino , Adulto , Feminino
2.
Magn Reson Med ; 91(6): 2459-2482, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38282270

RESUMO

PURPOSE: To develop and evaluate methods for (1) reconstructing 3D-quantification using an interleaved Look-Locker acquisition sequence with T2 preparation pulse (3D-QALAS) time-series images using a low-rank subspace method, which enables accurate and rapid T1 and T2 mapping, and (2) improving the fidelity of subspace QALAS by combining scan-specific deep-learning-based reconstruction and subspace modeling. THEORY AND METHODS: A low-rank subspace method for 3D-QALAS (i.e., subspace QALAS) and zero-shot deep-learning subspace method (i.e., Zero-DeepSub) were proposed for rapid and high fidelity T1 and T2 mapping and time-resolved imaging using 3D-QALAS. Using an ISMRM/NIST system phantom, the accuracy and reproducibility of the T1 and T2 maps estimated using the proposed methods were evaluated by comparing them with reference techniques. The reconstruction performance of the proposed subspace QALAS using Zero-DeepSub was evaluated in vivo and compared with conventional QALAS at high reduction factors of up to nine-fold. RESULTS: Phantom experiments showed that subspace QALAS had good linearity with respect to the reference methods while reducing biases and improving precision compared to conventional QALAS, especially for T2 maps. Moreover, in vivo results demonstrated that subspace QALAS had better g-factor maps and could reduce voxel blurring, noise, and artifacts compared to conventional QALAS and showed robust performance at up to nine-fold acceleration with Zero-DeepSub, which enabled whole-brain T1, T2, and PD mapping at 1 mm isotropic resolution within 2 min of scan time. CONCLUSION: The proposed subspace QALAS along with Zero-DeepSub enabled high fidelity and rapid whole-brain multiparametric quantification and time-resolved imaging.


Assuntos
Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética Multiparamétrica , Imageamento por Ressonância Magnética/métodos , Imageamento Tridimensional/métodos , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem , Imagens de Fantasmas
3.
Magn Reson Med ; 91(5): 1863-1875, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38192263

RESUMO

PURPOSE: To evaluate a vendor-agnostic multiparametric mapping scheme based on 3D quantification using an interleaved Look-Locker acquisition sequence with a T2 preparation pulse (3D-QALAS) for whole-brain T1, T2, and proton density (PD) mapping. METHODS: This prospective, multi-institutional study was conducted between September 2021 and February 2022 using five different 3T systems from four prominent MRI vendors. The accuracy of this technique was evaluated using a standardized MRI system phantom. Intra-scanner repeatability and inter-vendor reproducibility of T1, T2, and PD values were evaluated in 10 healthy volunteers (6 men; mean age ± SD, 28.0 ± 5.6 y) who underwent scan-rescan sessions on each scanner (total scans = 100). To evaluate the feasibility of 3D-QALAS, nine patients with multiple sclerosis (nine women; mean age ± SD, 48.2 ± 11.5 y) underwent imaging examination on two 3T MRI systems from different manufacturers. RESULTS: Quantitative maps obtained with 3D-QALAS showed high linearity (R2 = 0.998 and 0.998 for T1 and T2, respectively) with respect to reference measurements. The mean intra-scanner coefficients of variation for each scanner and structure ranged from 0.4% to 2.6%. The mean structure-wise test-retest repeatabilities were 1.6%, 1.1%, and 0.7% for T1, T2, and PD, respectively. Overall, high inter-vendor reproducibility was observed for all parameter maps and all structure measurements, including white matter lesions in patients with multiple sclerosis. CONCLUSION: The vendor-agnostic multiparametric mapping technique 3D-QALAS provided reproducible measurements of T1, T2, and PD for human tissues within a typical physiological range using 3T scanners from four different MRI manufacturers.


Assuntos
Encéfalo , Esclerose Múltipla , Masculino , Humanos , Feminino , Reprodutibilidade dos Testes , Estudos Prospectivos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Esclerose Múltipla/diagnóstico por imagem , Mapeamento Encefálico
4.
Pediatr Res ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38907045

RESUMO

BACKGROUND: Limited serial neuroimaging studies use magnetic resonance imaging (MRI) to define the evolution of hypoxic-ischemic insults to the brain of term infants and encompass both the primary injury and its secondary impact on cerebral development. The optimal timing of MRI to fully evaluate the impact of hypoxic-ischemic encephalopathy on brain development and associated neurodevelopmental sequelae remains unknown. METHODS: Goals: (a) review literature related to serial neuroimaging in term infants with HIE; (b) describe pilot data in two infants with HIE treated with therapeutic hypothermia who had a brain injury at day 3-5 and underwent four additional MRIs over the next 12 weeks of life and developmental evaluation at 24 months of age. RESULTS: Early MRI defines primary injury on diffusion-weighted imaging, yet the full impact may not be fully apparent until after 1 month of life. CONCLUSION: The full impact of an ischemic injury on the neonatal brain may not be fully visible until several weeks after the initial insult. This suggests the benefit of obtaining later time points for MRI to fully define the extent of injury and its neurodevelopmental impact. IMPACT: Few studies inform the nature of the evolution of brain injury with hypothermia in HIE, limiting understanding of potential neuroprotection. MRI is the standard of care for prognosis in infants with HIE, however timing for optimal prognostic prediction remains unclear. Insights from MRI after the first week of life may assist in defining the full extent of brain injury and prognostic significance. A pilot study using five MRI timepoints up to 3 months of age, is presented. More data is required with a systematic evaluation of the impact of early brain injury on brain development in term infants with HIE following TH.

5.
Magn Reson Med ; 90(5): 2019-2032, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37415389

RESUMO

PURPOSE: To develop and evaluate a method for rapid estimation of multiparametric T1 , T2 , proton density, and inversion efficiency maps from 3D-quantification using an interleaved Look-Locker acquisition sequence with T2 preparation pulse (3D-QALAS) measurements using self-supervised learning (SSL) without the need for an external dictionary. METHODS: An SSL-based QALAS mapping method (SSL-QALAS) was developed for rapid and dictionary-free estimation of multiparametric maps from 3D-QALAS measurements. The accuracy of the reconstructed quantitative maps using dictionary matching and SSL-QALAS was evaluated by comparing the estimated T1 and T2 values with those obtained from the reference methods on an International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom. The SSL-QALAS and the dictionary-matching methods were also compared in vivo, and generalizability was evaluated by comparing the scan-specific, pre-trained, and transfer learning models. RESULTS: Phantom experiments showed that both the dictionary-matching and SSL-QALAS methods produced T1 and T2 estimates that had a strong linear agreement with the reference values in the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom. Further, SSL-QALAS showed similar performance with dictionary matching in reconstructing the T1 , T2 , proton density, and inversion efficiency maps on in vivo data. Rapid reconstruction of multiparametric maps was enabled by inferring the data using a pre-trained SSL-QALAS model within 10 s. Fast scan-specific tuning was also demonstrated by fine-tuning the pre-trained model with the target subject's data within 15 min. CONCLUSION: The proposed SSL-QALAS method enabled rapid reconstruction of multiparametric maps from 3D-QALAS measurements without an external dictionary or labeled ground-truth training data.


Assuntos
Imageamento por Ressonância Magnética , Prótons , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Aprendizado de Máquina Supervisionado , Processamento de Imagem Assistida por Computador/métodos
6.
Magn Reson Med ; 87(6): 2697-2709, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35092081

RESUMO

PURPOSE: To accelerate the acquisition of relaxation-diffusion imaging by integrating time-division multiplexing (TDM) with simultaneous multi-slice (SMS) for EPI and evaluate imaging quality and diffusion measures. METHODS: The time-division multiplexing (TDM) technique and SMS method were integrated to achieve a high slice-acceleration (e.g., 6×) factor for acquiring relaxation-diffusion MRI. Two variants of the sequence, referred to as TDM3e-SMS and TDM2s-SMS, were developed to simultaneously acquire slice groups with three distinct TEs and two slice groups with the same TE, respectively. Both sequences were evaluated on a 3T scanner with in vivo human brains and compared with standard single-band (SB) -EPI and SMS-EPI using diffusion measures and tractography results. RESULTS: Experimental results showed that the TDM3e-SMS sequence with total slice acceleration of 6 (multiplexing factor (MP) = 3 × multi-band factor (MB) = 2) provided similar image intensity and microstructure measures compared to standard SMS-EPI with MB = 2, and yielded less bias in intensity compared to standard SMS-EPI with MB = 4. The three sequences showed a similar positive correlation between TE and mean kurtosis (MK) and a negative correlation between TE and mean diffusivity (MD) in white matter. Multi-fiber tractography also shows consistency of results in TE-dependent measures between different sequences. The TDM2s-SMS sequence (MP = 2, MB = 2) also provided imaging measures similar to standard SMS-EPI sequences (MB = 2) for single-TE diffusion imaging. CONCLUSIONS: The TDM-SMS sequence can provide additional 2× to 3× acceleration to SMS without degrading imaging quality. With the significant reduction in scan time, TDM-SMS makes joint relaxation-diffusion MRI a feasible technique in neuroimaging research to investigate new markers of brain disorders.


Assuntos
Imagem de Difusão por Ressonância Magnética , Imagem Ecoplanar , Aceleração , Encéfalo/diagnóstico por imagem , Difusão , Imagem de Difusão por Ressonância Magnética/métodos , Imagem Ecoplanar/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos
7.
Magn Reson Med ; 87(2): 629-645, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34490929

RESUMO

PURPOSE: To compare prospective motion correction (PMC) and retrospective motion correction (RMC) in Cartesian 3D-encoded MPRAGE scans and to investigate the effects of correction frequency and parallel imaging on the performance of RMC. METHODS: Head motion was estimated using a markerless tracking system and sent to a modified MPRAGE sequence, which can continuously update the imaging FOV to perform PMC. The prospective correction was applied either before each echo train (before-ET) or at every sixth readout within the ET (within-ET). RMC was applied during image reconstruction by adjusting k-space trajectories according to the measured motion. The motion correction frequency was retrospectively increased with RMC or decreased with reverse RMC. Phantom and in vivo experiments were used to compare PMC and RMC, as well as to compare within-ET and before-ET correction frequency during continuous motion. The correction quality was quantitatively evaluated using the structural similarity index measure with a reference image without motion correction and without intentional motion. RESULTS: PMC resulted in superior image quality compared to RMC both visually and quantitatively. Increasing the correction frequency from before-ET to within-ET reduced the motion artifacts in RMC. A hybrid PMC and RMC correction, that is, retrospectively increasing the correction frequency of before-ET PMC to within-ET, also reduced motion artifacts. Inferior performance of RMC compared to PMC was shown with GRAPPA calibration data without intentional motion and without any GRAPPA acceleration. CONCLUSION: Reductions in local Nyquist violations with PMC resulted in superior image quality compared to RMC. Increasing the motion correction frequency to within-ET reduced the motion artifacts in both RMC and PMC.


Assuntos
Artefatos , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Movimento (Física) , Estudos Prospectivos , Estudos Retrospectivos
8.
Magn Reson Med ; 87(4): 1914-1922, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34888942

RESUMO

PURPOSE: Fetal brain Magnetic Resonance Imaging suffers from unpredictable and unconstrained fetal motion that causes severe image artifacts even with half-Fourier single-shot fast spin echo (HASTE) readouts. This work presents the implementation of a closed-loop pipeline that automatically detects and reacquires HASTE images that were degraded by fetal motion without any human interaction. METHODS: A convolutional neural network that performs automatic image quality assessment (IQA) was run on an external GPU-equipped computer that was connected to the internal network of the MRI scanner. The modified HASTE pulse sequence sent each image to the external computer, where the IQA convolutional neural network evaluated it, and then the IQA score was sent back to the sequence. At the end of the HASTE stack, the IQA scores from all the slices were sorted, and only slices with the lowest scores (corresponding to the slices with worst image quality) were reacquired. RESULTS: The closed-loop HASTE acquisition framework was tested on 10 pregnant mothers, for a total of 73 acquisitions of our modified HASTE sequence. The IQA convolutional neural network, which was successfully employed by our modified sequence in real time, achieved an accuracy of 85.2% and area under the receiver operator characteristic of 0.899. CONCLUSION: The proposed acquisition/reconstruction pipeline was shown to successfully identify and automatically reacquire only the motion degraded fetal brain HASTE slices in the prescribed stack. This minimizes the overall time spent on HASTE acquisitions by avoiding the need to repeat the entire stack if only few slices in the stack are motion-degraded.


Assuntos
Feto , Imageamento por Ressonância Magnética , Feminino , Feto/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Movimento (Física) , Gravidez
9.
Ann Neurol ; 89(1): 143-157, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33084086

RESUMO

OBJECTIVE: Congenital heart disease (CHD) is associated with abnormal brain development in utero. We applied innovative fetal magnetic resonance imaging (MRI) techniques to determine whether reduced fetal cerebral substrate delivery impacts the brain globally, or in a region-specific pattern. Our novel design included two control groups, one with and the other without a family history of CHD, to explore the contribution of shared genes and/or fetal environment to brain development. METHODS: From 2014 to 2018, we enrolled 179 pregnant women into 4 groups: "HLHS/TGA" fetuses with hypoplastic left heart syndrome (HLHS) or transposition of the great arteries (TGA), diagnoses with lowest fetal cerebral substrate delivery; "CHD-other," with other CHD diagnoses; "CHD-related," healthy with a CHD family history; and "optimal control," healthy without a family history. Two MRIs were obtained between 18 and 40 weeks gestation. Random effect regression models assessed group differences in brain volumes and relationships to hemodynamic variables. RESULTS: HLHS/TGA (n = 24), CHD-other (50), and CHD-related (34) groups each had generally smaller brain volumes than the optimal controls (71). Compared with CHD-related, the HLHS/TGA group had smaller subplate (-13.3% [standard error = 4.3%], p < 0.01) and intermediate (-13.7% [4.3%], p < 0.01) zones, with a similar trend in ventricular zone (-7.1% [1.9%], p = 0.07). These volumetric reductions were associated with lower cerebral substrate delivery. INTERPRETATION: Fetuses with CHD, especially those with lowest cerebral substrate delivery, show a region-specific pattern of small brain volumes and impaired brain growth before 32 weeks gestation. The brains of fetuses with CHD were more similar to those of CHD-related than optimal controls, suggesting genetic or environmental factors also contribute. ANN NEUROL 2021;89:143-157.


Assuntos
Encéfalo/patologia , Cardiopatias Congênitas/patologia , Hemodinâmica/fisiologia , Transposição dos Grandes Vasos/patologia , Estudos de Casos e Controles , Desenvolvimento Fetal/fisiologia , Idade Gestacional , Cardiopatias Congênitas/diagnóstico , Humanos , Transposição dos Grandes Vasos/diagnóstico
10.
NMR Biomed ; 35(1): e4621, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34609036

RESUMO

MR spectroscopic imaging (MRSI) noninvasively maps the metabolism of human brains. In particular, the imaging of D-2-hydroxyglutarate (2HG) produced by glioma isocitrate dehydrogenase (IDH) mutations has become a key application in neuro-oncology. However, the performance of full field-of-view MRSI is limited by B0 spatial nonuniformity and lipid artifacts from tissues surrounding the brain. Array coils that multiplex RF-receive and B0 -shim electrical currents (AC/DC mixing) over the same conductive loops provide many degrees of freedom to improve B0 uniformity and reduce lipid artifacts. AC/DC coils are highly efficient due to compact design, requiring low shim currents (<2 A) that can be switched fast (0.5 ms) with high interscan reproducibility (10% coefficient of variation for repeat measurements). We measured four tumor patients and five volunteers at 3 T and show that using AC/DC coils in addition to the vendor-provided second-order spherical harmonics shim provides 19% narrower spectral linewidth, 6% higher SNR, and 23% less lipid content for unrestricted field-of-view MRSI, compared with the vendor-provided shim alone. We demonstrate that improvement in MRSI data quality led to 2HG maps with higher contrast-to-noise ratio for tumors that coincide better with the FLAIR-enhancing lesions in mutant IDH glioma patients. Smaller Cramér-Rao lower bounds for 2HG quantification are obtained in tumors by AC/DC shim, corroborating with simulations that predicted improved accuracy and precision for narrower linewidths. AC/DC coils can be used synergistically with optimized acquisition schemes to improve metabolic imaging for precision oncology of glioma patients. Furthermore, this methodology has broad applicability to other neurological disorders and neuroscience.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Glioma/diagnóstico por imagem , Glutaratos/análise , Isocitrato Desidrogenase/fisiologia , Imageamento por Ressonância Magnética/métodos , Adulto , Neoplasias Encefálicas/metabolismo , Feminino , Glioma/metabolismo , Humanos , Isocitrato Desidrogenase/genética , Masculino , Mutação
11.
Neuroradiology ; 64(2): 217-232, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34654960

RESUMO

J-difference-edited spectroscopy is a valuable approach for the detection of low-concentration metabolites with magnetic resonance spectroscopy (MRS). Currently, few edited MRS studies are performed in neonates due to suboptimal signal-to-noise ratio, relatively long acquisition times, and vulnerability to motion artifacts. Nonetheless, the technique presents an exciting opportunity in pediatric imaging research to study rapid maturational changes of neurotransmitter systems and other metabolic systems in early postnatal life. Studying these metabolic processes is vital to understanding the widespread and rapid structural and functional changes that occur in the first years of life. The overarching goal of this review is to provide an introduction to edited MRS for neonates, including the current state-of-the-art in editing methods and editable metabolites, as well as to review the current literature applying edited MRS to the neonatal brain. Existing challenges and future opportunities, including the lack of age-specific reference data, are also discussed.


Assuntos
Encéfalo , Ácido gama-Aminobutírico , Artefatos , Encéfalo/diagnóstico por imagem , Criança , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética
12.
Cereb Cortex ; 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34347052

RESUMO

Functional connectivity (FC) techniques can delineate brain organization as early as infancy, enabling the characterization of early brain characteristics associated with subsequent behavioral outcomes. Previous studies have identified specific functional networks in infant brains that underlie cognitive abilities and pathophysiology subsequently observed in toddlers and preschoolers. However, it is unknown whether and how functional networks emerging within the first 18 months of life contribute to the development of higher order, complex functions of language/literacy at school-age. This 5-year longitudinal imaging project starting in infancy, utilized resting-state functional magnetic resonance imaging and demonstrated prospective associations between FC in infants/toddlers and subsequent language and foundational literacy skills at 6.5 years old. These longitudinal associations were shown independently of key environmental influences and further present in a subsample of infant imaging data (≤12 months), suggesting early emerged functional networks specifically linked to high-order language and preliteracy skills. Moreover, emergent language skills in infancy and toddlerhood contributed to the prospective associations, implicating a role of early linguistic experiences in shaping the FC correlates of long-term oral language skills. The current results highlight the importance of functional organization established in infancy and toddlerhood as a neural scaffold underlying the learning process of complex cognitive functions.

13.
Magn Reson Med ; 86(5): 2528-2541, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34196032

RESUMO

PURPOSE: To develop a time-division multiplexing echo-planar imaging (TDM-EPI) sequence for approximately two- to threefold acceleration when acquiring joint relaxation-diffusion MRI data with multiple TEs. METHODS: The proposed TDM-EPI sequence interleaves excitation and data collection for up to 3 separate slices at different TEs and uses echo-shifting gradients to disentangle the overlapping echo signals during the readout period. By properly arranging the sequence event blocks for each slice and adjusting the echo-shifting gradients, diffusion-weighted images from separate slices can be acquired. Therefore, we present 2 variants of the sequence. A single-TE TDM-EPI is presented to demonstrate the concept. Next, a multi-TE TDM-EPI is presented to highlight the advantages of the TDM approach for relaxation-diffusion imaging. These sequences were evaluated on a 3 Tesla scanner with a water phantom and in vivo human brain data. RESULTS: The single-TE TDM-EPI sequence can simultaneously acquire 2 slices with a maximum b value of 3000 s/mm2 and 2.5 mm isotropic resolution using interleaved readout windows with TE ≈ 78 ms. With the same b value and resolution, the multi-TE TDM-EPI sequence can simultaneously acquire 2 or 3 separate slices using interleaved readout sections with shortest TE ≈ 70 ms and ΔTE ≈ 30 ms. Phantom and in vivo experiments have shown that the proposed TDM-EPI sequences can provide similar image quality and diffusion measures as conventional EPI readouts with multiple echoes but can reduce the overall relaxation-diffusion protocol scan time by approximately two- to threefold. CONCLUSION: TDM-EPI is a novel approach to acquire diffusion imaging data at multiple TEs. This enables a significant reduction in acquisition time for relaxation-diffusion MRI experiments but without compromising image quality and diffusion measurements, thus removing a significant barrier to the adoption of relaxation-diffusion MRI in clinical research studies of neurological and mental disorders.


Assuntos
Imagem de Difusão por Ressonância Magnética , Imagem Ecoplanar , Encéfalo/diagnóstico por imagem , Difusão , Humanos , Imagens de Fantasmas
14.
Magn Reson Med ; 86(5): 2810-2821, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34240759

RESUMO

PURPOSE: This study investigates whether two-channel radiofrequency (RF) shimming can improve imaging without increasing specific absorption rate (SAR) for fetal MRI at 3T. METHODS: Transmit field ( B1+ ) average and variation in the fetus was simulated in seven numerical pregnant body models. Safety was quantified by maternal and fetal peak local SAR and fetal average SAR. The shim parameter space was divided into improved B1+ (magnitude and homogeneity) and improved SAR regions, and an overlap where RF shimming improved both classes of metrics compared with birdcage mode was assessed. Additionally, the effect of fetal position, tissue detail, and dielectric properties on transmit field and SAR was studied. RESULTS: A region of subject-specific RF shim parameter space improving both B1+ and SAR metrics was found for five of the seven models. Optimizing only B1+ metrics improved B1+ efficiency across models by 15% on average and 28% for the best-case model. B1+ variation improved by 26% on average and 49% for the best case. However, for these shim settings, fetal SAR increased by up to 106%. The overlap region, where both B1+ and SAR metrics improve, showed an average B1+ efficiency improvement of 6% on average across models and 19% for the best-case model. B1+ variation improved by 13% on average and 40% for the best case. RFS could also decrease maternal/fetal SAR by up to 49%/58%. CONCLUSION: RF shimming can improve imaging compared with birdcage mode without increasing fetal and maternal SAR when a patient-specific SAR model is incorporated into the shimming procedure.


Assuntos
Imageamento por Ressonância Magnética , Ondas de Rádio , Feminino , Feto/diagnóstico por imagem , Humanos , Imagens de Fantasmas , Gravidez
15.
NMR Biomed ; 34(7): e4520, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33913194

RESUMO

Quantification of proton magnetic resonance spectroscopy (1 H-MRS) data is commonly performed by referencing the ratio of the signal from one metabolite, or metabolite group, to that of another, or to the water signal. Both approaches have drawbacks: ratios of two metabolites can be difficult to interpret because study effects may be driven by either metabolite, and water-referenced data must be corrected for partial volume and relaxation effects in the water signal. Here, we introduce combined reference (CRef) analysis, which compensates for both limitations. In this approach, metabolites are referenced to the combined signal of several reference metabolites or metabolite groups. The approach does not require the corrections necessary for water scaling and produces results that are less sensitive to the variation of any single reference signal, thereby aiding the interpretation of results. We demonstrate CRef analysis using 202 1 H-MRS acquisitions from the brains of 140 infants, scanned at approximately 1 and 3 months of age. We show that the combined signal of seven reference metabolites or metabolite groups is highly correlated with the water signal, corrected for partial volume and relaxation effects associated with cerebral spinal fluid. We also show that the combined reference signal is equally or more uniform across subjects than the reference signals from single metabolites or metabolite groups. We use CRef analysis to quantify metabolite concentration changes during the first several months of life in typically developing infants.


Assuntos
Análise de Dados , Espectroscopia de Ressonância Magnética , Corpo Caloso/diagnóstico por imagem , Feminino , Substância Cinzenta/diagnóstico por imagem , Humanos , Lactente , Masculino , Metaboloma , Padrões de Referência , Processamento de Sinais Assistido por Computador , Água , Substância Branca/diagnóstico por imagem
16.
Cereb Cortex ; 30(4): 2057-2069, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-31711132

RESUMO

Maternal nutrition is an important factor for infant neurodevelopment. However, prior magnetic resonance imaging (MRI) studies on maternal nutrients and infant brain have focused mostly on preterm infants or on few specific nutrients and few specific brain regions. We present a first study in term-born infants, comprehensively correlating 73 maternal nutrients with infant brain morphometry at the regional (61 regions) and voxel (over 300 000 voxel) levels. Both maternal nutrition intake diaries and infant MRI were collected at 1 month of life (0.9 ± 0.5 months) for 92 term-born infants (among them, 54 infants were purely breastfed and 19 were breastfed most of the time). Intake of nutrients was assessed via standardized food frequency questionnaire. No nutrient was significantly correlated with any of the volumes of the 61 autosegmented brain regions. However, increased volumes within subregions of the frontal cortex and corpus callosum at the voxel level were positively correlated with maternal intake of omega-3 fatty acids, retinol (vitamin A) and vitamin B12, both with and without correction for postmenstrual age and sex (P < 0.05, q < 0.05 after false discovery rate correction). Omega-3 fatty acids remained significantly correlated with infant brain volumes after subsetting to the 54 infants who were exclusively breastfed, but retinol and vitamin B12 did not. This provides an impetus for future larger studies to better characterize the effect size of dietary variation and correlation with neurodevelopmental outcomes, which can lead to improved nutritional guidance during pregnancy and lactation.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Aleitamento Materno/tendências , Desenvolvimento Infantil/fisiologia , Ácidos Graxos Ômega-3/administração & dosagem , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Adulto , Estudos de Coortes , Feminino , Humanos , Lactente , Recém-Nascido , Tamanho do Órgão/fisiologia , Gravidez , Estudos Prospectivos
17.
Neuroimage ; 210: 116540, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31945509

RESUMO

Anthropometric indicators, including stunting, underweight, and wasting, have previously been associated with poor neurocognitive outcomes. This link may exist because malnutrition and infection, which are known to affect height and weight, also impact brain structure according to animal models. However, a relationship between anthropometric indicators and brain structural measures has not been tested yet, perhaps because stunting, underweight, and wasting are uncommon in higher-resource settings. Further, with diminished anthropometric growth prevalent in low-resource settings, where biological and psychosocial hazards are most severe, one might expect additional links between measures of poverty, anthropometry, and brain structure. To begin to examine these relationships, we conducted an MRI study in 2-3-month-old infants growing up in the extremely impoverished urban setting of Dhaka, Bangladesh. The sample size was relatively small because the challenges of investigating infant brain structure in a low-resource setting needed to be realized and resolved before introducing a larger cohort. Initially, fifty-four infants underwent T1 sequences using 3T MRI, and resulting structural images were segmented into gray and white matter maps, which were carefully evaluated for accurate tissue labeling by a pediatric neuroradiologist. Gray and white matter volumes from 29 infants (79 â€‹± â€‹10 days-of-age; F/M â€‹= â€‹12/17), whose segmentations were of relatively high quality, were submitted to semi-partial correlation analyses with stunting, underweight, and wasting, which were measured using height-for-age (HAZ), weight-for-age (WAZ), and weight-for-height (WHZ) scores. Positive semi-partial correlations (after adjusting for chronological age and sex and correcting for multiple comparisons) were observed between white matter volume and HAZ and WAZ; however, WHZ was not correlated with any measure of brain volume. No associations were observed between income-to-needs or maternal education and brain volumetric measures, suggesting that measures of poverty were not associated with total brain tissue volume in this sample. Overall, these results provide the first link between diminished anthropometric growth and white matter volume in infancy. Challenges of conducting a developmental neuroimaging study in a low-resource country are also described.


Assuntos
Estatura , Peso Corporal , Desenvolvimento Infantil , Substância Cinzenta/anatomia & histologia , Pobreza , Substância Branca/anatomia & histologia , Bangladesh , Estatura/fisiologia , Peso Corporal/fisiologia , Desenvolvimento Infantil/fisiologia , Estudos Transversais , Feminino , Substância Cinzenta/diagnóstico por imagem , Transtornos do Crescimento/diagnóstico por imagem , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Projetos Piloto , Magreza/diagnóstico por imagem , Síndrome de Emaciação/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
18.
Magn Reson Med ; 83(4): 1418-1428, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31626373

RESUMO

PURPOSE: We generate 12 models from 4 pregnant individuals to evaluate individual differences in local specific absorption rate (SAR) for differing body habitus and fetal and maternal positions. METHODS: Structural MR images from 4 pregnant subjects (including supine and left-lateral maternal positions) were manually segmented to create 12 body models by rotating the fetus, modifying the fat content, and altering the maternal arm position in 1 of the subjects. Electromagnetic simulations modeled at 3 Tesla determined the average and peak local SAR in the maternal trunk, fetus, fetal brain, and amniotic fluid. RESULTS: We observed a significant range of fetal and maternal peak local SAR across the models (maternal trunk: 19.14-44.03 watts/kg, fetus: 9.93-18.79 watts/kg, fetal brain 3.36-10.3 watts/kg). We found that maternal body habitus changes introduced a significant variation in the maternal peak local SAR but not the fetal local SAR. However, the maternal position (either rotating the mother to left-lateral position or altering the arm position) introduced changes in fetal peak local SAR (range: 11.9-17.9 watts/kg). Rotating the fetus also introduced variation in the fetal and fetal brain peak local SAR. CONCLUSION: The observed variation in SAR emphasizes the need for more anatomical models to enable better safety management of individuals during fetal MRI, including a wider range of gestational ages.


Assuntos
Feto , Imageamento por Ressonância Magnética , Feminino , Feto/diagnóstico por imagem , Idade Gestacional , Humanos , Modelos Anatômicos , Gravidez
19.
Cereb Cortex ; 29(3): 1218-1229, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29425270

RESUMO

The normal development of thalamocortical connections plays a critical role in shaping brain connectivity in the prenatal and postnatal periods. Recent studies using advanced magnetic resonance imaging (MRI) techniques in neonates and infants have shown that abnormal thalamocortical connectivity is associated with adverse neurodevelopmental outcomes. However, all these studies have focused on a single neuroimaging modality, overlooking the dynamic relationship between structure and function at this early stage. Here, we study the relationship between structural and functional thalamocortical connectivity patterns derived from healthy full-term infants scanned with diffusion-weighted MRI and resting-state functional MRI within the first weeks of life (mean gestational age = 39.3 ± 1.2 weeks; age at scan = 24.2 ± 7.9 days). Our results show that while there is, in general, good spatial agreement between both MRI modalities, there are regional variations that are system-specific: regions involving primary-sensory cortices exhibit greater structural/functional overlap, whereas higher-order association areas such as temporal and posterior parietal cortices show divergence in spatial patterns of each modality. This variability illustrates the complementarity of both modalities and highlights the importance of multimodal approaches.


Assuntos
Córtex Cerebral/anatomia & histologia , Córtex Cerebral/crescimento & desenvolvimento , Tálamo/anatomia & histologia , Tálamo/crescimento & desenvolvimento , Mapeamento Encefálico , Desenvolvimento Infantil , Imagem de Difusão por Ressonância Magnética , Feminino , Idade Gestacional , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/anatomia & histologia , Vias Neurais/crescimento & desenvolvimento
20.
Cereb Cortex ; 29(8): 3605-3616, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-30272144

RESUMO

Fetuses with congenital heart disease (CHD) have third trimester alterations in cortical development on brain magnetic resonance imaging (MRI). However, the intersulcal relationships contributing to global sulcal pattern remain unknown. This study applied a novel method for examining the geometric and topological relationships between sulci to fetal brain MRIs from 21-30 gestational weeks in CHD fetuses (n = 19) and typically developing (TD) fetuses (n = 17). Sulcal pattern similarity index (SI) to template fetal brain MRIs was determined for the position, area, and depth for corresponding sulcal basins and intersulcal relationships for each subject. CHD fetuses demonstrated altered global sulcal patterns in the left hemisphere compared with TD fetuses (TD [SI, mean ± SD]: 0.822 ± 0.023, CHD: 0.795 ± 0.030, P = 0.002). These differences were present in the earliest emerging sulci and were driven by differences in the position of corresponding sulcal basins (TD: 0.897 ± 0.024, CHD: 0.878 ± 0.019, P = 0.006) and intersulcal relationships (TD: 0.876 ± 0.031, CHD: 0.857 ± 0.018, P = 0.033). No differences in cortical gyrification index, mean curvature, or surface area were present. These data suggest our methods may be more sensitive than traditional measures for evaluating cortical developmental alterations early in gestation.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Feto/diagnóstico por imagem , Cardiopatias Congênitas , Encéfalo/diagnóstico por imagem , Encéfalo/embriologia , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Humanos , Imageamento Tridimensional , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Lobo Occipital/diagnóstico por imagem , Lobo Parietal/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem , Gravidez , Segundo Trimestre da Gravidez , Terceiro Trimestre da Gravidez , Estudos Prospectivos , Lobo Temporal/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA