Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
EMBO J ; 41(17): e109205, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35880301

RESUMO

Patient-derived organoids and cellular spheroids recapitulate tissue physiology with remarkable fidelity. We investigated how engagement with a reconstituted basement membrane in three dimensions (3D) supports the polarized, stress resilient tissue phenotype of mammary epithelial spheroids. Cells interacting with reconstituted basement membrane in 3D had reduced levels of total and actin-associated filamin and decreased cortical actin tension that increased plasma membrane protrusions to promote negative plasma membrane curvature and plasma membrane protein associations linked to protein secretion. By contrast, cells engaging a reconstituted basement membrane in 2D had high cortical actin tension that forced filamin unfolding and endoplasmic reticulum (ER) associations. Enhanced filamin-ER interactions increased levels of PKR-like ER kinase effectors and ER-plasma membrane contact sites that compromised calcium homeostasis and diminished cell viability. Consequently, cells with decreased cortical actin tension had reduced ER stress and survived better. Consistently, cortical actin tension in cellular spheroids regulated polarized basement membrane membrane deposition and sensitivity to exogenous stress. The findings implicate cortical actin tension-mediated filamin unfolding in ER function and underscore the importance of tissue mechanics in organoid homeostasis.


Assuntos
Actinas , Retículo Endoplasmático , Actinas/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Células Epiteliais/metabolismo , Filaminas/metabolismo , Fenótipo
2.
J Struct Biol ; 213(4): 107801, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34582983

RESUMO

With the rapid increase and accessibility of high-resolution imaging technologies of cells, the interpretation of results relies more and more on the assumption that the three-dimensional integrity of the surrounding cellular landscape is not compromised by the experimental setup. However, the only available technology for directly probing the structural integrity of whole-cell preparations at the nanoscale is electron cryo-tomography, which is time-consuming, costly, and complex. We devised an accessible, inexpensive and reliable screening assay to quickly report on the compatibility of experimental protocols with preserving the structural integrity of whole-cell preparations at the nanoscale. Our Rapid Cell Integrity Assessment (RCIA) assay is executed at room temperature and relies solely on light microscopy imaging. Using cellular electron cryo-tomography as a benchmark, we verify that RCIA accurately unveils the adverse impact of reagents and/or protocols such as those used for virus inactivation or to arrest dynamic processes on the cellular nanoarchitecture.


Assuntos
Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Células Eucarióticas/ultraestrutura , Imageamento Tridimensional/métodos , Nanoestruturas/ultraestrutura , Citoesqueleto de Actina/química , Citoesqueleto de Actina/ultraestrutura , Animais , Células Cultivadas , Células Eucarióticas/química , Células Eucarióticas/classificação , Células HeLa , Humanos , Membranas Intracelulares/química , Membranas Intracelulares/ultraestrutura , Camundongos , Microscopia de Fluorescência/métodos , Mitocôndrias/química , Mitocôndrias/ultraestrutura , Células NIH 3T3 , Nanoestruturas/química , Reprodutibilidade dos Testes , Células THP-1
3.
J Micromech Microeng ; 29(11)2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32879557

RESUMO

Cryogenic electron tomography is the highest resolution tool available for structural analysis of macromolecular organization inside cells. Micropatterning of extracellular matrix (ECM) proteins is an established in vitro cell culture technique used to control cell shape. Recent traction force microscopy studies have shown correlation between cell morphology and the regulation of force transmission. However, it remains unknown how cells sustain increased strain energy states and localized stresses at the supramolecular level. Here, we report a technology to enable direct observation of mesoscale organization in epithelial cells under morphological modulation, using a maskless protein photopatterning method (PRIMO) to confine cells to ECM micropatterns on electron microscopy substrates. These micropatterned cell culture substrates can be used in mechanobiology research to correlate changes in nanometer-scale organization at cell-cell and cell-ECM contacts to strain energy states and traction stress distribution in the cell.

4.
Mol Biol Cell ; 33(14): br28, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36287913

RESUMO

Matrix stiffness and dimensionality have been shown to be major determinants of cell behavior. However, a workflow for examining nanometer-scale responses of the associated molecular machinery is not available. Here, we describe a comprehensive, quantitative workflow that permits the analysis of cells responding to mechanical and dimensionality cues in their native state at nanometer scale by cryogenic electron tomography. Using this approach, we quantified distinct cytoskeletal nanoarchitectures and vesicle phenotypes induced in human mammary epithelial cells in response to stiffness and dimensionality of reconstituted basement membrane. Our workflow closely recapitulates the microenvironment associated with acinar morphogenesis and identified distinct differences in situ at nanometer scale. Using drug treatment, we showed that molecular events and nanometer-scale rearrangements triggered by engagement of apical cell receptors with reconstituted basement membrane correspond to changes induced by reduction of cortical tension. Our approach is fully adaptable to any kind of stiffness regime, extracellular matrix composition, and drug treatment.


Assuntos
Células Epiteliais , Matriz Extracelular , Humanos , Fluxo de Trabalho , Morfogênese , Matriz Extracelular/metabolismo , Tomografia com Microscopia Eletrônica
5.
Nat Commun ; 13(1): 7831, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539423

RESUMO

Protein micropatterning enables robust control of cell positioning on electron-microscopy substrates for cryogenic electron tomography (cryo-ET). However, the combination of regulated cell boundaries and the underlying electron-microscopy substrate (EM-grids) provides a poorly understood microenvironment for cell biology. Because substrate stiffness and morphology affect cellular behavior, we devised protocols to characterize the nanometer-scale details of the protein micropatterns on EM-grids by combining cryo-ET, atomic force microscopy, and scanning electron microscopy. Measuring force displacement characteristics of holey carbon EM-grids, we found that their effective spring constant is similar to physiological values expected from skin tissues. Despite their apparent smoothness at light-microscopy resolution, spatial boundaries of the protein micropatterns are irregular at nanometer scale. Our protein micropatterning workflow provides the means to steer both positioning and morphology of cell doublets to determine nanometer details of punctate adherens junctions. Our workflow serves as the foundation for studying the fundamental structural changes governing cell-cell signaling.


Assuntos
Processamento de Imagem Assistida por Computador , Proteínas , Processamento de Imagem Assistida por Computador/métodos , Microscopia Crioeletrônica/métodos , Carbono/química , Transdução de Sinais
6.
Mol Microbiol ; 76(1): 173-89, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20149103

RESUMO

The bacterium Caulobacter crescentus has morphologically and functionally distinct cell poles that undergo sequential changes during the cell cycle. We show that the PopZ oligomeric network forms polar ribosome exclusion zones that change function during cell cycle progression. The parS/ParB chromosomal centromere is tethered to PopZ at one pole prior to the initiation of DNA replication. During polar maturation, the PopZ-centromere tether is broken, and the PopZ zone at that pole then switches function to act as a recruitment factor for the ordered addition of multiple proteins that promote the transformation of the flagellated pole into a stalked pole. Stalked pole assembly, in turn, triggers the initiation of chromosome replication, which signals the formation of a new PopZ zone at the opposite cell pole, where it functions to anchor the newly duplicated centromere that has traversed the long axis of the cell. We propose that pole-specific control of PopZ function co-ordinates polar development and cell cycle progression by enabling independent assembly and tethering activities at the two cell poles.


Assuntos
Proteínas de Bactérias/metabolismo , Caulobacter crescentus/fisiologia , Ciclo Celular , Polaridade Celular , Caulobacter crescentus/metabolismo , Centrômero/metabolismo , Cromossomos Bacterianos/metabolismo , Replicação do DNA , DNA Bacteriano/metabolismo , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Microscopia Imunoeletrônica , Modelos Biológicos , Modelos Moleculares , Multimerização Proteica
7.
Exp Eye Res ; 88(3): 600-9, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19073179

RESUMO

Mutant connexins have been linked to hereditary congenital cataracts. One such mutant causes a proline-to-serine substitution at position 88 in human connexin 50 (CX50P88S). In transfected cells, CX50P88S does not form gap junctions, but localizes in cytoplasmic multilamellar structures. We studied the dynamics of formation and the stability of these structures in HeLa cells stably transfected with CX50P88S containing a tetracysteine motif appended to its C-terminus (HeLa-CX50P88S(Cys)(4) cells). The tetracysteine motif binds the membrane-permeable biarsenical compounds, FlAsH and ReAsH, which become fluorescent upon binding allowing detection of CX50P88S(Cys)(4) by fluorescence microscopy or by transmission electron microscopy after the ReAsH-driven fluorescent photoconversion of diaminobenzidine. CX50P88S structures were long-lived. Pulse labeling of HeLa-CX50P88S(Cys)(4) cells with FlAsH followed by a chase and ReAsH labeling showed a differential distribution of the labels, with older CX50P88S surrounded by newly synthesized protein. Formation of CX50P88S accumulations was not affected by treatments that block ER-to-Golgi transport. Transmission electron microscopy and tomographic reconstruction revealed that CX50P88S accumulations corresponded to closely apposed circular or semicircular membrane stacks that were sometimes continuous with the rough endoplasmic reticulum. These results suggest that CX50P88S accumulations originate from the rough endoplasmic reticulum and that mutant protein is sequentially added resulting in long-lived cytoplasmic particles. The persistence of these particles in the lens may cause light scattering and the pulverulent cataracts observed in affected individuals.


Assuntos
Catarata/genética , Conexinas/genética , Citoplasma/metabolismo , Proteínas do Olho/genética , Mutação , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Conexinas/metabolismo , Citoplasma/ultraestrutura , Tomografia com Microscopia Eletrônica , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Proteínas do Olho/metabolismo , Células HeLa , Humanos , Microscopia Eletrônica
8.
J Struct Biol ; 161(3): 439-46, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17998167

RESUMO

Virus assembly occurs in a complex environment and is dependent upon viral and cellular components being properly correlated in time and space. The simplicity of the flock house virus (FHV) capsid and the extensive structural, biochemical and genetic characterization of the virus make it an excellent system for studying in vivo virus assembly. The tetracysteine motif (CCPGCC), that induces fluorescence in bound biarsenical compounds (FlAsH and ReAsH), was genetically inserted in the coat protein, to visualize this gene product during virus infection. The small size of this modification when compared to those made by traditional fluorescent proteins minimizes disruption of the coat proteins numerous functions. ReAsH not only fluoresces when bound to the tetracysteine motif but also allows correlated electron microscopy (EM) of the same cell following photoconversion and osmium staining. These studies demonstrated that the coat protein was concentrated in discrete patches in the cell. High pressure freezing (HPF) followed by freeze substitution (FS) of infected cells showed that these patches were formed by virus particles in crystalline arrays. EM tomography (EMT) of the HPF/FS prepared samples showed that these arrays were proximal to highly modified mitochondria previously established to be the site of RNA replication. Two features of the mitochondrial modification are approximately 60 nm spherules that line the outer membrane and the large chamber created by the convolution induced in the entire organelle.


Assuntos
Capsídeo/ultraestrutura , Drosophila/virologia , Nodaviridae/ultraestrutura , Montagem de Vírus/fisiologia , Animais , Proteínas Luminescentes , Microscopia Eletrônica , Mitocôndrias/ultraestrutura , Tomografia
9.
Biochem J ; 408(3): 375-85, 2007 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17714073

RESUMO

The C-terminus of the most abundant and best-studied gap-junction protein, connexin43, contains multiple phosphorylation sites and protein-binding domains that are involved in regulation of connexin trafficking and channel gating. It is well-documented that SDS/PAGE of NRK (normal rat kidney) cell lysates reveals at least three connexin43-specific bands (P0, P1 and P2). P1 and P2 are phosphorylated on multiple, unidentified serine residues and are found primarily in gap-junction plaques. In the present study we prepared monoclonal antibodies against a peptide representing the last 23 residues at the C-terminus of connexin43. Immunofluorescence studies showed that one antibody (designated CT1) bound primarily to connexin43 present in the Golgi apparatus, whereas the other antibody (designated IF1) labelled predominately connexin43 present in gap junctions. CT1 immunoprecipitates predominantly the P0 form whereas IF1 recognized all three bands. Peptide mapping, mutational analysis and protein-protein interaction experiments revealed that unphosphorylated Ser364 and/or Ser365 are critical for CT1 binding. The IF1 paratope binds to residues Pro375-Asp379 and requires Pro375 and Pro377. These proline residues are also necessary for ZO-1 interaction. These studies indicate that the conformation of Ser364/Ser365 is important for intracellular localization, whereas the tertiary structure of Pro375-Asp379 is essential in targeting and regulation of gap junctional connexin43.


Assuntos
Anticorpos/imunologia , Conexina 43/química , Junções Comunicantes/química , Complexo de Golgi/química , Animais , Linhagem Celular , Conexina 43/genética , Conexina 43/imunologia , Cães , Eletroforese em Gel de Poliacrilamida , Imunoprecipitação , Microscopia Confocal , Microscopia de Fluorescência , Mutagênese Sítio-Dirigida , Fosforilação , Conformação Proteica , Ratos
10.
Nat Neurosci ; 7(3): 244-53, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14770185

RESUMO

Regulation of AMPA receptor (AMPAR) trafficking is important for neural plasticity. Here we examined the trafficking and synthesis of the GluR1 and GluR2 subunits using ReAsH-EDT(2) and FlAsH-EDT(2) staining. Activity blockade of rat cultured neurons increased dendritic GluR1, but not GluR2, levels. Examination of transected dendrites revealed that both AMPAR subunits were synthesized in dendrites and that activity blockade enhanced dendritic synthesis of GluR1 but not GluR2. In contrast, acute pharmacological manipulations increased dendritic synthesis of both subunits. AMPARs synthesized in dendrites were inserted into synaptic plasma membranes and, after activity blockade, the electrophysiological properties of native synaptic AMPARs changed in the manner predicted by the imaging experiments. In addition to providing a novel mechanism for synaptic modifications, these results point out the advantages of using FlAsH-EDT(2) and ReAsH-EDT(2) for studying the trafficking of newly synthesized proteins in local cellular compartments such as dendrites.


Assuntos
Potenciais de Ação/genética , Dendritos/metabolismo , Plasticidade Neuronal/genética , Receptores de AMPA/biossíntese , Membranas Sinápticas/metabolismo , Transmissão Sináptica/genética , Potenciais de Ação/efeitos dos fármacos , Motivos de Aminoácidos/efeitos dos fármacos , Motivos de Aminoácidos/fisiologia , Animais , Arsenicais , Células Cultivadas , Cisteína , Dendritos/efeitos dos fármacos , Dendritos/ultraestrutura , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feto , Ácido Glutâmico/farmacologia , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Oxazinas , Fragmentos de Peptídeos , Transporte Proteico/fisiologia , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/antagonistas & inibidores , Receptores de AMPA/genética , Membranas Sinápticas/efeitos dos fármacos , Membranas Sinápticas/ultraestrutura , Transmissão Sináptica/efeitos dos fármacos , Regulação para Cima/fisiologia
11.
J Neurosci ; 24(20): 4889-93, 2004 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-15152050

RESUMO

The neuroligins are a family of postsynaptic transmembrane proteins that associate with presynaptic partners, the beta-neurexins. Neurexins and neuroligins play a critical role in initiating formation and differentiation of synaptic junctions. A recent study reported that a mutation of neuroligin-3 (NL3), an X-linked gene, was found in siblings with autistic spectrum disorder in which two affected brothers had a point mutation that substituted a Cys for Arg451. To characterize the mutation at the biochemical level, we analyzed expression and activity of the mutated protein. Mass spectrometry comparison of the disulfide bonding pattern between the native and the mutated proteins indicates the absence of aberrant disulfide bonding, suggesting that the secondary structure of the mutated protein is conserved. However, the mutation separately affects protein expression and activity. The Cys mutation causes defective neuroligin trafficking, leading to retention of the protein in the endoplasmic reticulum. This, in turn, decreases the delivery of NL3 to the cell surface. Also, the small fraction of protein that reaches the cell membrane lacks or has markedly diminished beta-neurexin-1 (NX1beta) binding activity. Other substitutions for Arg451 allow for normal cellular expression but diminished affinity for NX1beta. Our findings reveal a cellular phenotype and loss of function for a congenital mutation associated with autistic spectrum disorders.


Assuntos
Transtorno Autístico/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Processamento de Proteína Pós-Traducional/genética , Substituição de Aminoácidos , Animais , Moléculas de Adesão Celular Neuronais , Linhagem Celular , Eletroforese em Gel de Poliacrilamida , Imunofluorescência , Expressão Gênica , Humanos , Immunoblotting , Espectrometria de Massas , Proteínas de Membrana/química , Proteínas do Tecido Nervoso/química , Ligação Proteica/genética , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Deleção de Sequência , Solubilidade , Ressonância de Plasmônio de Superfície , Transfecção
12.
Chem Biol Interact ; 157-158: 371-2, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16429495

RESUMO

An Arg to Cys mutation in the extracellular domain of neuroligin-3 (NL3) was recently found in a twin set with autism [S. Jamain, H. Quach, C. Betancur, M. Rastam, C. Colineaux, I.C. Gillberg, H. Soderstrom, B. Giros, M. Leboyer, C. Gillberg, T. Bourgeron, Paris Autism Research International Sibpair Study, mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism, Nat. Genet. 34 (2003) 27-29]. The Cys substitution in NL3 causes altered intracellular protein trafficking, intracellular retention and diminished association with its cognate partner, beta-neurexin [D. Comoletti, A. De Jaco, L.L. Jennings, R.E. Flynn, G. Gaietta, I. Tsigelny, M.H. Ellisman, P. Taylor, The R451C-neuroligin-3 mutation associated with autism reveals a defect in protein processing, J. Neurosci. 24 (2004) 4889-4893]. NL3, butyrylcholinesterase (BuChE), and acetylcholinesterase (AChE), as members of the (/(-hydrolase fold family of proteins, share over 30% of amino acid identity in their extracellular domains. In particular, Arg451 in NL3 is conserved in the alpha/beta-hydrolase fold family being homologous to Arg386 in BuChE and Arg395 in AChE. A Cys substitution at the homologous Arg in the BuChE was found studying post-succinylcholine apnea in an Australian population [T. Yen, B.N. Nightingale, J.C. Burns, D.R. Sullivan, P.M. Stewart, Butyrylcholinesterase (BCHE) genotyping for post-succinylcholine apnea in an Australian population, Clin. Chem. 49 (2003) 1297-308]. We have made the homologous mutation in the mouse AChE and BuChE genes and showed that the Arg to Cys mutations resulted in identical alterations in the cellular phenotype for the various members of the alpha/beta-hydrolase fold family proteins.


Assuntos
Hidrolases/genética , Hidrolases/metabolismo , Mutação/genética , Processamento de Proteína Pós-Traducional , Hidrolases/química , Hidrolases/classificação
13.
Cell Commun Adhes ; 10(4-6): 181-6, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14681013

RESUMO

Gap junctions (GJ) are defined as contact regions between two adjacent cells containing tens to thousands of closely packed membrane channels. Cells dynamically modulate communication through GJ by regulating the synthesis, transport and turnover of these channels. Previously, we engineered a recombinant connexin43 (Cx43) by genetically appending a small tetracysteine peptide motif containing the sequence -Cys-Cys-Xaa-Xaa-Cys-Cys- to the carboxy terminus of Cx43 (Cx43-TC) (3). Cx43-TC was stably expressed in HeLa cells and was specifically labeled by exposing the cells to membrane-permeant non-fluorescent ligands, such as FlAsH (a fluorescein derivative) and ReAsH (a resorufin derivative). Direct correlation of live cell images with high resolution EM detection was possible because bound ReAsH not only becomes fluorescent, but can also be used to initiate the photoconversion of diaminobenzidine (DAB) that causes the localized polymerization of an insoluble osmiophilic precipitate then visible by EM. Cx43-TC GJ's could be labeled with ReAsH and photooxidized to give selectively stained channels. Here, how the development of these tetracysteine tags complexed with appropriate ligands are useful for experiments spanning resolution ranges from light microscopy to electron tomography to molecular purification and detection is described.


Assuntos
Conexina 43/genética , Cisteína/genética , Fluoresceínas/química , Junções Comunicantes/ultraestrutura , Transporte Biológico/fisiologia , Compostos Cromogênicos/química , Conexina 43/metabolismo , Cisteína/metabolismo , Junções Comunicantes/metabolismo , Células HeLa , Humanos , Microscopia Eletrônica
14.
Cold Spring Harb Protoc ; 2011(1): pdb.prot5547, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21205847

RESUMO

Correlation of real-time or time-lapse light microscopy (LM) with electron microscopy (EM) of cells can be performed with biarsenical dyes. These dyes fluorescently label tetracysteine-tagged proteins so that they can be imaged with LM and, upon fluorescent photoconversion of 3,3'-diaminobenzidine tetrahydrochloride (DAB), with EM as well. In the following protocol, cells expressing tetracysteine-tagged proteins are labeled for 1 h with biarsenical dyes. The volumes indicated are for a single 30-mm culture dish containing 2 mL of labeling medium. Scale the suggested volumes up or down depending upon the size of the culture dish used in the labeling. The same procedure can be adapted for longer labeling times by lowering the amount of dye used to 50-100 nM; however, the amount of the competing dithiol EDT is maintained at 10-20 µM. Longer labeling times often produce higher signal-to-noise ratios and cause less trauma to the treated cells prior to imaging.


Assuntos
Proteínas Recombinantes/análise , Coloração e Rotulagem/métodos , Arsenicais , Linhagem Celular , Corantes , Processamento de Imagem Assistida por Computador/métodos , Microscopia/métodos
15.
Cold Spring Harb Protoc ; 2011(1): pdb.prot5548, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21205848

RESUMO

Correlated light microscopy (LM)/electron microscopy (EM) analysis can be achieved by using biarsenical dyes to fluorescently label tetracysteine-tagged proteins. Once live cell imaging using LM is complete, cellular activity can be halted promptly using a glutaraldehyde-based fixative. Rapid fixation preserves cellular ultrastructure and limits diffusion of reaction products. This protocol provides details on rapid fixation of cells, followed by fluorescence photoconversion of 3,3'-diaminobenzidine tetrahydrochloride (DAB) and sample processing for EM that can be correlated with the live cell LM images.


Assuntos
Proteínas Recombinantes/análise , Coloração e Rotulagem/métodos , Arsenicais , Linhagem Celular , Corantes Fluorescentes , Processamento de Imagem Assistida por Computador/métodos , Microscopia Eletrônica/métodos
16.
Cold Spring Harb Protoc ; 2011(1): pdb.top94, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21205860

RESUMO

Fundamental to obtaining a more complete understanding of the roles played by macromolecular complexes in cells is the ability to map their location, movement, and transient interactions at high temporal and high spatial resolution. Unfortunately, probes capable of allowing direct correlation of real-time or time-lapse light microscopy (LM) with electron microscopic observations are relatively few. Genetically encoded fluorescent reporters such as green fluorescent protein (GFP) have revolutionized live cell imaging studies but are not directly visible by electron microscopy (EM). Fluorescent nanoparticles or quantum dots are a type of label for LM that can also be visualized directly by EM, but targeting these to cytoplasmic proteins in living cells remains difficult. One method that does allow for highly correlated LM and EM with excellent preservation of cellular ultrastructure is fluorescence photoconversion, in which a fluorescent compound causes the deposition of a reaction product that can be rendered electron-dense and directly visualized by EM. We have used this method in combination with a class of genetically encoded peptide tags that can be labeled in living cells by fluorophores bearing two appropriately spaced arsenic atoms (biarsenicals). The tetracysteine motif is short, easily inserted into or attached to the termini of the host protein, and can be used in combination with other molecular tags such as GFP and its derivatives. This article presents methods to label cells with biarsenicals, conduct live cell imaging recording sessions, and generate specimens that can be evaluated by EM for a correlated LM/EM analysis.


Assuntos
Arsenicais/metabolismo , Cisteína/metabolismo , Microscopia/métodos , Coloração e Rotulagem/métodos , Arsenicais/química , Cisteína/química
17.
J Cell Biol ; 193(2): 347-63, 2011 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-21502359

RESUMO

Although RII protein kinase A (PKA) regulatory subunits are constitutively localized to discrete cellular compartments through binding to A-kinase-anchoring proteins (AKAPs), RI subunits are primarily diffuse in the cytoplasm. In this paper, we report a novel AKAP-dependent localization of RIα to distinct organelles, specifically, multivesicular bodies (MVBs). This localization depends on binding to AKAP11, which binds tightly to free RIα or RIα in complex with catalytic subunit (holoenzyme). However, recruitment to MVBs occurs only with the release of PKA catalytic subunit (PKAc). This recruitment is reversed by reassociation with PKAc, and it is disrupted by the presence of AKAP peptides, mutations in the RIα AKAP-binding site, or knockdown of AKAP11. Cyclic adenosine monophosphate binding not only unleashes active PKAc but also leads to the targeting of AKAP11:RIα to MVBs. Therefore, we show that the RIα holoenzyme is part of a signaling complex with AKAP11, in which AKAP11 may direct RIα functionality after disassociation from PKAc. This model defines a new paradigm for PKA signaling.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Corpos Multivesiculares , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/genética , Domínio Catalítico , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Humanos , Isoenzimas/metabolismo , Dados de Sequência Molecular , Mutação , Ligação Proteica , Transporte Proteico , Transdução de Sinais
18.
Nat Protoc ; 5(10): 1666-77, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20885379

RESUMO

In this paper, we provide a general protocol for labeling proteins with the membrane-permeant fluorogenic biarsenical dye fluorescein arsenical hairpin binder-ethanedithiol (FlAsH-EDT2). Generation of the tetracysteine-tagged protein construct by itself is not described, as this is a protein-specific process. This method allows site-selective labeling of proteins in living cells and has been applied to a wide variety of proteins and biological problems. We provide here a generally applicable labeling procedure and discuss the problems that can occur as well as general considerations that must be taken into account when designing and implementing the procedure. The method can even be applied to proteins with expression below 1 pmol mg⁻¹ of protein, such as G protein-coupled receptors, and it can be used to study the intracellular localization of proteins as well as functional interactions in fluorescence resonance energy transfer experiments. The labeling procedure using FlAsH-EDT2 as described takes 2-3 h, depending on the number of samples to be processed.


Assuntos
Fluoresceínas/química , Corantes Fluorescentes/química , Compostos Organometálicos/química , Proteínas/química , Coloração e Rotulagem/métodos , Sequência de Aminoácidos , Animais , Arsenicais/química , Sítios de Ligação , Células Cultivadas , Transferência Ressonante de Energia de Fluorescência , Humanos , Ligação Proteica , Proteínas/análise
19.
J Biol Chem ; 282(43): 31733-43, 2007 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-17715132

RESUMO

Pannexins are newly discovered channel proteins expressed in many different tissues and abundantly in the vertebrate central nervous system. Based on membrane topology, folding and secondary structure prediction, pannexins are proposed to form gap junction-like structures. We show here that Pannexin1 forms a hexameric channel and reaches the cell surface but, unlike connexins, is N-glycosylated. Using site-directed mutagenesis we analyzed three putative N-linked glycosylation sites and examined the effects of each mutation on channel expression. We show for the first time that Pannexin1 is glycosylated at Asn-254 and that this residue is important for plasma membrane targeting. The glycosylation of Pannexin1 at its extracellular surface makes it unlikely that two oligomers could dock to form an intercellular channel. Ultrastructural analysis by electron microscopy confirmed that Pannexin1 junctional areas do not appear as canonical gap junctions. Rather, Pannexin1 channels are distributed throughout the plasma membrane. We propose that N-glycosylation of Pannexin1 could be a significant mechanism for regulating the trafficking of these membrane proteins to the cell surface in different tissues.


Assuntos
Membrana Celular/metabolismo , Conexinas/química , Conexinas/metabolismo , Canais Iônicos/ultraestrutura , Asparagina/metabolismo , Biotinilação , Linhagem Celular , Membrana Celular/ultraestrutura , Conexinas/genética , Conexinas/ultraestrutura , Reagentes de Ligações Cruzadas/farmacologia , Relação Dose-Resposta a Droga , Eletrofisiologia , Glicosilação , Humanos , Imuno-Histoquímica , Rim/citologia , Modelos Biológicos , Mutação , Proteínas do Tecido Nervoso , Processamento de Proteína Pós-Traducional , Estrutura Secundária de Proteína , Succinimidas/farmacologia
20.
J Biol Chem ; 281(14): 9667-76, 2006 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-16434405

RESUMO

A mutation linked to autistic spectrum disorders encodes an Arg to Cys replacement in the C-terminal portion of the extracellular domain of neuroligin-3. The solvent-exposed Cys causes virtually complete retention of the protein in the endoplasmic reticulum when the protein is expressed in transfected cells. An identical Cys substitution was reported for butyrylcholinesterase through genotyping patients with post-succinylcholine apnea. Neuroligin, butyrylcholinesterase, and acetylcholinesterase are members of the alpha,beta-hydrolase fold family of proteins sharing sequence similarity and common tertiary structures. Although these proteins have distinct oligomeric assemblies and cellular dispositions, homologous Arg residues in neuroligin-3 (Arg-451), in butyrylcholinesterase (Arg-386), and in acetylcholinesterase (Arg-395) are conserved in all studied mammalian species. To examine whether an homologous Arg to Cys mutation affects related proteins similarly despite their differing capacities to oligomerize, we inserted homologous mutations in the acetylcholinesterase and butyrylcholinesterase cDNAs. Using confocal fluorescence microscopy and analysis of oligosaccharide processing, we find that the homologous Arg to Cys mutation also results in endoplasmic reticulum retention of the two cholinesterases. Small quantities of mutated acetylcholinesterase exported from the cell retain activity but show a greater K(m), a much smaller k(cat), and altered substrate inhibition. The nascent proteins associate with chaperones during processing, but the mutation presumably restricts processing through the endoplasmic reticulum and Golgi apparatus, because of local protein misfolding and inability to oligomerize. The mutation may alter the capacity of these proteins to dissociate from their chaperone prior to oligomerization and processing for export.


Assuntos
Acetilcolinesterase/genética , Transtorno Autístico/genética , Butirilcolinesterase/genética , Retículo Endoplasmático/fisiologia , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Dobramento de Proteína , Acetilcolinesterase/metabolismo , Butirilcolinesterase/metabolismo , Moléculas de Adesão Celular Neuronais , DNA Complementar , Proteínas de Membrana/metabolismo , Microscopia Confocal , Chaperonas Moleculares , Mutagênese Sítio-Dirigida , Proteínas do Tecido Nervoso/metabolismo , Mutação Puntual , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA