Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biofouling ; 35(1): 34-49, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30727758

RESUMO

Quorum sensing (QS), the communication signaling network, regulates biofilm formation and several virulence factors in Pseudomonas aeruginosa PAO1, a nosocomial opportunistic pathogen. QS is considered to be a challenging target for compounds antagonistic to virulent factors. Biologically synthesized silver nanoparticles (AgNPs) are reported as anti-QS and anti-biofilm drugs against bacterial infections. The present study reports on the synthesis and characterization of Piper betle (Pb) mediated AgNPs (Pb-AgNPs). The anti-QS activity of Pb-AgNPs against Chromobacterium violaceum and the potential effect of Pb-AgNPs on QS-regulated phenotypes in PAO1 were studied. FTIR analysis exhibited that Pb-AgNPs had been capped by phytochemical constituents of Pb. Eugenol is one of the active phenolic phytochemicals in Pb leaves, therefore molecular docking of eugenol-conjugated AgNPs on QS regulator proteins (LasR, LasI and MvfR) was performed. Eugenol-conjugated AgNPs showed considerable binding interactions with QS-associated proteins. These results provide novel insights into the development of phytochemically conjugated nanoparticles as promising anti-infective candidates.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Nanopartículas Metálicas/química , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Prata/química , Biofilmes/crescimento & desenvolvimento , Chromobacterium/fisiologia , Infecção Hospitalar/microbiologia , Violeta Genciana/química , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Elastase Pancreática/química , Compostos Fitoquímicos/farmacologia , Piper betle/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Fatores de Virulência/metabolismo
2.
Indian J Microbiol ; 57(2): 235-240, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28611502

RESUMO

Tilapia (Oreochromis mossambicus) is one of the most invasive fish found throughout the World and emerged as a major threat to the indigenous fishes in many countries. Investigating the gut microbial diversity of such fishes is one of the ways to understand its physiology. In the present study, we have explored the gut microbial community structure of tilapia using 16S rRNA gene sequencing on the Illumina Miseq platform. Our study showed significant differences in tilapia gut microbiota collected from different habitats (i.e. river and lakes) suggesting the influence of habitat on the gut microbial diversity of tilapia. This study gives a first insight into the mossambicus tilapia gut microbiota and provides a reference for future studies.

3.
Crit Rev Biotechnol ; 36(5): 777-87, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26189355

RESUMO

Nanotechnology is the creation and use of materials and devices on the same scale as molecules and intracellular structures, typically less than 100 nm in size. It is an emerging science and has made its way into pharmaceuticals to significantly improve the delivery and efficacy of drugs in a number of therapeutic areas, due to development of various nanoparticle-based products. In recent years, there has been increasing evidence that nanotechnology can help to overcome many of the ocular diseases and hence researchers are keenly interested in this science. Nanomedicines offer promise as viable alternatives to conventional drops, gels or ointments to improve drug delivery to the eye. Because of their small size, they are well tolerated, thus preventing washout, increase bioavailability and also help in specific drug delivery. This review describes the application of nanotechnology in the control of human diseases with special emphasis on various eye and ocular surfaces diseases.


Assuntos
Oftalmopatias/tratamento farmacológico , Nanopartículas/uso terapêutico , Animais , Humanos , Nanotecnologia
4.
Indian J Microbiol ; 56(2): 172-81, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27570309

RESUMO

Many toxic compounds are produced and released in the hemicellulosic hydrolyzates during the acid pretreatment step, which are required for the disruption of the lignocelluloses matrix and sugars release. The conventional methods of detoxification i.e. overliming, activated charcoal, ion exchange or even membrane-based separations have the limitations in removal of these toxic inhibitors in fermentation process. Hence, it is imperative to explore biological methods to overcome the inhibitors by minimizing the filtration steps, sugar loss and chemical additions. In the present study we screened sixty-four strains of yeasts to select potential strains for detoxification of furfural, acetic acid, ferulic acid, 5-hydroxymethyl furfural (5-HMF) as carbon and energy source. Among these strains Pichia occidentalis M1, Y1'a, Y1'b and Y3' showed a significant decrease in the toxic compounds but we selected two best yeast strains i.e. P. occidentalis Y1'a and P. occidentalis M1 for the further experiments with an aim to remove the fermentation inhibitors. The yeasts P. occidentalis Y1'a and P. occidentalis M1 were grown aerobically in sugarcane bagasse hemicellulose hydrolysate under submerged cultivation. For each yeast, a 2(2) full factorial design was performed considering the variables-pH (4.0 or 5.0) and agitation rate (100 or 300 rpm), and the percentage removal of HMF, furfural, acetic acid and phenols from hemicellulosic hydrolysates were responsive variables. After 96 h of biological treatment, P. occidentalis M1 and P. occidentalis Y1'a showed 42.89 and 46.04 % cumulative removal of inhibitors, respectively.

5.
J Food Sci Technol ; 53(9): 3381-3394, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27777445

RESUMO

Antimicrobial peptides (AMPs) are diverse group of natural proteins present in animals, plants, insects and bacteria. These peptides are responsible for defense of host from pathogenic organisms. Chemical, enzymatic and recombinant techniques are used for the synthesis of antimicrobial peptides. These peptides have been found to be an alternative to the chemical preservatives. Currently, nisin is the only antimicrobial peptide, which is widely utilized in the preservation of food. Antimicrobial peptides can be used alone or in combination with other antimicrobial, essential oils and polymeric nanoparticles to enhance the shelf-life of food. This review presents an overview on different types of antimicrobial peptides, purification techniques, mode of action and application in food preservation.

6.
Biotechnol Appl Biochem ; 60(5): 482-93, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23848561

RESUMO

We have screened 18 Phoma spp. for the mycosynthesis of silver nanoparticles (AgNPs). Out of 18, 17 Phoma spp. demonstrated mycosynthesis of AgNPs, which were characterized by UV-vis spectrophotometry, Fourier transform infrared, X-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy (SEM), nanoparticle tracking and analysis system, and zeta potential measurement. SEM and TEM analysis showed the mycosynthesis of polydispersed spherical AgNPs, with the exception by P. sorghina (MTCC-2096), which revealed the fabrication of silver nanorods. The effect of pH, temperature, silver nitrate, fungal filtrate, and light intensity was studied to understand the mechanism of mycosynthesis of AgNPs by P. sorghina. The involvement of protein was found during the mycosynthesis but the process failed to follow the Michaelis-Menton kinetics of the enzyme-catalyzed reaction. A three-step hypothetical mechanism, that is, activation, nucleation, and reduction, for the mycosynthesis of silver nanorods is proposed. The present study will be useful for the stable and rapid mycosynthesis of AgNPs. The extracellular process involved in synthesis of AgNPs was found to be rapid, simple, easy, and ecofriendly.


Assuntos
Ascomicetos/metabolismo , Nanopartículas Metálicas/química , Prata/metabolismo , Prata/química , Especificidade da Espécie
7.
ScientificWorldJournal ; 2013: 796018, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24222751

RESUMO

Synthesis of silver nanoparticles (SNPs) by fungi is emerging as an important branch of nanotechnology due to its ecofriendly, safe, and cost-effective nature. In order to increase the yield of biosynthesized SNPs of desired shape and size, it is necessary to control the cultural and physical parameters during the synthesis. We report optimum synthesis of SNPs on malt extract glucose yeast extract peptone (MGYP) medium at pH 9-11, 40-60°C, and 190.7 Lux and in sun light. The salt concentrations, volume of filtrate and biomass quantity were found to be directly proportional to the yield. The optimized conditions for the stable and rapid synthesis will help in large scale synthesis of monodispersed SNPs. The main aim of the present study was to optimize different media, temperature, pH, light intensity, salt concentration, volume of filtrate, and biomass quantity for the synthesis of SNPs by Fusarium oxysporum.


Assuntos
Fusarium/crescimento & desenvolvimento , Nanopartículas Metálicas/química , Prata/química , Meios de Cultura
8.
Comput Biol Chem ; 104: 107829, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36842391

RESUMO

The rapid development of multi-drug resistant (MDR) pathogens adds urgency to search for novel and safe drugs having promising action on new and re-emerging infectious pathogens. Serratia marcescens is an MDR pathogen that causes several-healthcare associated infections. Curbing bacterial virulence, rather than inhibiting its growth, is a promising strategy to diminish the pathogenesis of infectious bacteria, reduce the development of antimicrobial resistance, and boost the host immune power to eradicate infections. Bergamot essential oil (BEO) is a remarkable source of promising therapeutics against pathogens. Therefore, the present investigation aimed to analyze the major phytocompounds from BEO against S. marcescens virulent proteins using in silico studies. The analysis of BEO phytocompounds was achieved by Gas chromatography-mass spectrometry (GC-MS) method. The molecular docking was carried out using the SP and XP docking protocol of the Glide program. The drug-likeness and pharmacokinetics properties (ADMET properties) were analyzed with SwissADME and pkCSM server. The results revealed that the major compounds present in BEO are Linalool (8.17%), D-Limonene (21.26%), and Linalyl acetate (26.91%). Molecular docking analysis revealed that these compounds docked strongly within the binding cavities of Serratia protease and FabI model which in turn curb the pathogenesis of this bacteria. Linalool interacted with the Serratia protease and FabI with a binding energy of - 3.130 kcal/mol and - 3.939 kcal/mol, respectively. Based on the pharmacokinetics findings all lead BEO phytocompounds appear to be promising drug candidates. Overall, these results represent a significant step in the development of plant-based compounds as a promising inhibitor of the virulent proteins of the MDR S. marcescens.


Assuntos
Óleos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Serratia marcescens , Peptídeo Hidrolases , Simulação de Acoplamento Molecular
9.
3 Biotech ; 12(11): 317, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36276439

RESUMO

In this study we aim to investigate the computational docking approach of biofabricated silver nanoparticles against P. aeruginosa virulent exoenzymes, such as ExoS and ExoY. Therefore, the synthesis and characterization of biofabricated silver nanoparticles using Piper betle leaves (Pb-AgNPs) were carried out. The surface topology and functional group attachment on the surface of Pb-AgNPs were analyzed using UV-visible spectroscopy, Scanning Electron Microscopy, Fourier Transformed Infrared Spectroscopy (FTIR), and X-Ray Diffraction. The FTIR analysis revealed that the synthesized silver nanoparticles were capped with P. betle phytochemicals importantly Eugenol and Hydroxychavicol. These are the major bioactive compounds present in P. betle leaves; therefore, computational docking of Eugenol-conjugated AgNPs (PbEu-AgNPs) and Hydroxychavicol-conjugated AgNPs (PbHy-AgNPs) against ExoS and ExoY was performed. The active residues of PbEu-AgNPs and PbHy-AgNPs interacted with the active site of ExoS and ExoY exoenzymes. Biofabricated AgNP-mediated inhibition of these virulent exoenzymes blocked the adverse effect of P. aeruginosa on the host cell. The computational analysis provides new approach into the design of biofabricated AgNPs as promising anti-infective nanomedicine agents. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03367-0.

10.
Front Microbiol ; 13: 881404, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35722297

RESUMO

Wound healing is a complex phenomenon particularly owing to the rise in antimicrobial resistance. This has attracted the attention of the scientific community to search for new alternative solutions. Among these, silver being antimicrobial has been used since ancient times. Considering this fact, the main goal of our study was to evaluate the wound-healing ability of mycofabricated silver nanoparticles (AgNPs). We have focused on the formulation of silver nanogel for the management of wounds in albino Wistar rats. Mycosynthesized AgNPs from Fusarium oxysporum were used for the development of novel wound-healing antimicrobial silver nanogel with different concentrations of AgNPs, i.e., 0.1, 0.5, and 1 mg g-1. The formulated silver nanogel demonstrated excellent wound-healing activity in the incision, excision, and burn wound-healing model. In the incision wound-healing model, silver nanogel at a concentration of 0.5 mg g-1 exhibited superior wound-healing effect, whereas in the case of excision and burn wound-healing model, silver nanogel at the concentrations of 0.1 and 1 mg g-1 showed enhanced wound-healing effect, respectively. Moreover, silver nanogel competently arrests the bacterial growth on the wound surface and offers an improved local environment for scald wound healing. Histological studies of healed tissues and organs of the rat stated that AgNPs at less concentration (1 mg g-1) do not show any toxic or adverse effect on the body and promote wound healing of animal tissue. Based on these studies, we concluded that the silver nanogel prepared from mycosynthesized AgNPs can be used as a promising antimicrobial wound dressing.

11.
J Biomol Struct Dyn ; 40(1): 154-165, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-32838699

RESUMO

The interest in naturally occurring essential oils from medicinal plants has increased extremely over the last decade markedly because they possess antimicrobial and antioxidant protective properties against different chronic diseases. Extensive survival of drug-resistant infectious bacteria depends on quorum sensing (QS) signaling network which raises the need for alternative antibacterial compounds. The aim of this study was to examine the phytochemical compounds of patchouli essential oil (PEO) and to assess its antioxidant activity. Antioxidant studies estimated by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging method showed that the PEO has effective antioxidant activity (IC50 19.53 µg/mL). QS inhibitory activity of PEO was examined by employing the biosensor strain, Chromobacterium violaceum CV12472. At sub-lethal concentrations, PEO potentially reduced the QS regulated violacein synthesis in CV12472 without inhibiting its cell proliferation. Moreover, it also effectively reduced the production of some QS regulated virulence factors and biofilm development in P. aeruginosa PAO1 without hindering its growth. Phytochemical analysis of PEO was done by GC/MS technique. Molecular docking of PEO major compounds with QS (LasR and FabI) and biofilm regulator proteins (MvfR and Sialidase) of PAO1 was evaluated. These phytocompounds showed potential hydrogen binding interactions with these proteins. The overall results, in vitro and in silico, suggest that PEO could be applied as biocontrol agent against antibiotic resistance pathogens. Communicated by Ramaswamy H. Sarma.


Assuntos
Óleos Voláteis , Pogostemon , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Biofilmes , Simulação de Acoplamento Molecular , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Percepção de Quorum , Fatores de Virulência
12.
Int J Med Mushrooms ; 13(5): 483-91, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22324414

RESUMO

Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum, has been used over the ages as highly medicinal herb in the Orient. Many useful properties of this fungus are still being studied; we report here a new facet of this "elixir of life" as a mycosource for synthesis of metal nanoparticles. Treating the extracellular suspension filtrate of the mycelia of G. lucidum with silver nitrate reduces the metal ions to nanoparticles. Optical detection followed by confirmation through spectroscopic analysis suggests that this fungus can be used for the purpose of safe and sure synthesis of silver nanoparticles, demand for which is growing day by day in all fields of human life. LM-20 analysis of these G. lucidum-synthesised nanoparticles reveals the polydispersity and distribution of silver nanoparticles in the range of 10-70 nm with an average size of 45 nm and a concentration of 0.37 x 108 particles/mL. FT-IR spectrum confirms the stability of these nanoparticles due to presence of amide linkages and protein capping. These nanoparticles have shown strong bactericidal activity against test pathogens Staphylococcus aureus and Escherichia coli, and also exhibited their efficiency in enhancing the activity of the synthetic antibiotic tetracycline. The method of synthesising silver nanoparticles and its bactericidal effect discussed here can be used for environment-friendly and economically feasible production for different applications where chemically synthesized nanoparticles cause undesirable effects.


Assuntos
Antibacterianos/metabolismo , Antibacterianos/farmacologia , Ganoderma/metabolismo , Nanopartículas Metálicas/química , Prata/química , Prata/metabolismo , Antibacterianos/química , Escherichia coli , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos
13.
J Fungi (Basel) ; 7(2)2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33672011

RESUMO

Nanotechnology is a new and developing branch that has revolutionized the world by its applications in various fields including medicine and agriculture. In nanotechnology, nanoparticles play an important role in diagnostics, drug delivery, and therapy. The synthesis of nanoparticles by fungi is a novel, cost-effective and eco-friendly approach. Among fungi, Fusarium spp. play an important role in the synthesis of nanoparticles and can be considered as a nanofactory for the fabrication of nanoparticles. The synthesis of silver nanoparticles (AgNPs) from Fusarium, its mechanism and applications are discussed in this review. The synthesis of nanoparticles from Fusarium is the biogenic and green approach. Fusaria are found to be a versatile biological system with the ability to synthesize nanoparticles extracellularly. Different species of Fusaria have the potential to synthesise nanoparticles. Among these, F. oxysporum has demonstrated a high potential for the synthesis of AgNPs. It is hypothesised that NADH-dependent nitrate reductase enzyme secreted by F. oxysporum is responsible for the reduction of aqueous silver ions into AgNPs. The toxicity of nanoparticles depends upon the shape, size, surface charge, and the concentration used. The nanoparticles synthesised by different species of Fusaria can be used in medicine and agriculture.

14.
Environ Sci Pollut Res Int ; 27(22): 27221-27233, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31065983

RESUMO

Biological methods offer eco-friendly and cost-effective alternatives for the synthesis of silver nanoparticles (AgNPs). The present study highlights a green process where AgNPs were synthesized and optimized by using silver nitrate (AgNO3) and the aqueous extract of Piper betle (Pbet) leaf as the reducing and capping agent. The stable and optimized process for the synthesis of Pbet-AgNPs was exposure of reaction mixture into the sunlight for 40 min, pH 9.0, and 2 mM AgNO3 using 1:4 diluted Pbet leaf aqueous extract. The optimized Pbet-AgNPs were characterized by UV-visible spectroscopy, high-resolution field emission scanning electron microscopy (FE-SEM), X-ray diffractometry (XRD), and Fourier-transform infrared spectroscopy (FTIR). The prepared Pbet-AgNPs were spherical in shape with size in the range of 6-14 nm. These nanoparticles were stable for 6 months in aqueous solution at room temperature under dark conditions. The biogenic synthesized Pbet-AgNPs are found to have significant antifungal activity against plant pathogenic fungi, Alternaria brassicae and Fusarium solani. Synthesized Pbet-AgNPs potentially reduced the fungal growth in a dose-dependent manner. Microscopic observation of treated mycelium showed that Pbet-AgNPs could disrupt the mycelium cell wall and induce cellular permeability. Protein leakage assay supports these findings. Overall, this study revealed the efficacy of green synthesized AgNPs to control the plant fungal pathogens. Pbet leaves are a rich source of phenolic biomolecule(s). It was hypothesized that these biomolecule(s) mediated metal reduction reactions. In this context, the present work investigates the phytobiomolecule(s) of the aqueous extract of Pbet leaves using high-resolution liquid chromatography-mass spectroscopy (HR-LCMS) method. The analysis revealed that eugenol, chavicol, and hydroxychavicol were present in the Pbet aqueous extract.


Assuntos
Nanopartículas Metálicas , Piper betle , Extratos Vegetais , Folhas de Planta , Prata , Nitrato de Prata , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Biotechnol Adv ; 37(1): 154-176, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30481544

RESUMO

Chemical, physical and mechanical methods of nanomaterial preparation are still regarded as mainstream methods, and the scientific community continues to search for new ways of nanomaterial preparation. The major objective of this review is to highlight the advantages of using green chemistry and bionanotechnology in the preparation of functional low-cost catalysts. Bionanotechnology employs biological principles and processes connected with bio-phase participation in both design and development of nano-structures and nano-materials, and the biosynthesis of metallic nanoparticles is becoming even more popular due to; (i) economic and ecologic effectiveness, (ii) simple one-step nanoparticle formation, stabilisation and biomass support and (iii) the possibility of bio-waste valorisation. Although it is quite difficult to determine the precise mechanisms in particular biosynthesis and research is performed with some risk in all trial and error experiments, there is also the incentive of understanding the exact mechanisms involved. This enables further optimisation of bionanoparticle preparation and increases their application potential. Moreover, it is very important in bionanotechnological procedures to ensure repeatability of the methods related to the recognised reaction mechanisms. This review, therefore, summarises the current state of nanoparticle biosynthesis. It then demonstrates the application of biosynthesised metallic nanoparticles in heterogeneous catalysis by identifying the many examples where bionanocatalysts have been successfully applied in model reactions. These describe the degradation of organic dyes, the reduction of aromatic nitro compounds, dehalogenation of chlorinated aromatic compounds, reduction of Cr(VI) and the synthesis of important commercial chemicals. To ensure sustainability, it is important to focus on nanomaterials that are capable of maintaining the important green chemistry principles directly from design inception to ultimate application.


Assuntos
Biotecnologia/tendências , Catálise , Química Verde/tendências , Nanopartículas Metálicas/química , Nanoestruturas/química
16.
IET Nanobiotechnol ; 11(5): 568-575, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28745291

RESUMO

In the present study, the authors synthesised copper nanoparticles (CuNPs) by using extract of Zingiber officinale (ginger) and later the NPs were bioconjugated with nisin, which shows antimicrobial activity against food spoilage microorganisms. CuNPs and its bioconjugate were characterised by ultraviolet-vis spectroscopy, NP tracking analysis, Zetasizer, transmission electron microscopy analysis, X-ray diffraction and Fourier transform infra-red (FTIR) spectroscopy. Zeta potential of CuNPs and its bioconjugate were found to be very stable. They evaluated in vitro efficacy of CuNPs and its bioconjugate against selected food spoilage bacteria: namely, Staphylococcus aureus, Pseudomonas fluorescens, Listeria monocytogenes and fungi including Fusarium moniliforme and Aspergillus niger. Antimicrobial activity of CuNPs was found to be maximum against F. moniliforme (18 mm) and the least activity was noted against L. monocytogenes (13 mm). Antioxidant activity of CuNPs and ginger extract was performed by various methods such as total antioxidant capacity reducing power assay, 1-1-diphenyl-2-picryl-hydrazyl free radical scavenging assay and hydrogen peroxide assay. Antioxidant activity of CuNPs was higher as compared with ginger extract. Hence, CuNPs and its bioconjugate can be used against food spoilage microorganisms.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antioxidantes/farmacologia , Cobre/química , Nanopartículas Metálicas/química , Antibacterianos/química , Antifúngicos/química , Antioxidantes/química , Biofilmes/efeitos dos fármacos , Zingiber officinale/química , Técnicas In Vitro , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Nisina/química , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
17.
Mitochondrial DNA A DNA Mapp Seq Anal ; 28(5): 638-644, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27159727

RESUMO

DNA barcoding has emerged as an additional tool for taxonomy and as an aid to taxonomic impediments. Due to their extensive morphological variation, spiders are taxonomically challenging. Therefore, all over the world, attempts are being made to DNA barcode species of spiders. Till now no attempts were made to DNA barcode Indian spiders despite their rich diversity. We have generated DNA barcodes for 60 species (n = 112) of spiders for the first time from India. Although only 17 species were correctly identified at the species level, DNA barcoding correctly discriminated 99% of the species studied here. We have also found high intraspecies nucleotide divergence in Plexippus paykulli suggesting cryptic diversity that needs to be studied in detail. Our study also showed non-specific amplification of the Cytochrome Oxidase I (COI) gene of endosymbiont bacteria Wolbachia. However, these cases are very rare and could be resolved by the use of modified or group specific primers.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Análise de Sequência de DNA/métodos , Aranhas/classificação , Animais , Complexo IV da Cadeia de Transporte de Elétrons/genética , Variação Genética , Índia , Filogenia , Especificidade da Espécie , Aranhas/enzimologia , Aranhas/genética
18.
IET Nanobiotechnol ; 11(2): 205-211, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28477005

RESUMO

Aim: The authors report the biological synthesis of zinc oxide nanoparticles (ZnO-NPs) from the petals extract of Rosa indica L. (rose). Its efficacy was evaluated against two dermatophytes: namely: Trichophyton mentagrophytes and Microsporum canis which cause onychomycosis. The activity of antibiotics against the tested dermatophytes was enhanced, when evaluated in combination with ZnO-NPs. Methods and results: The synthesised ZnO-NPs were preliminary detected by using ultraviolet UV visible spectroscopy, which showed specific absorbance. The ZnO-NPs were further characterised by nanoparticle tracking analysis (NTA), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), X-ray diffraction and Zetasizer. Moreover, nanoparticles containing nail paint (nanopaint) was formulated and its antifungal activity was also assessed against T. mentagrophytes and M. canis. ZnO-NPs and formulated nanopaint containing ZnO-NPs, both showed significant antifungal activity. The maximum activity was noted against M. canis and lesser against T. mentagrophytes. Minimum inhibitory concentration of ZnO-NPs was also determined against the dermatophytes causing onychomycosis infection. Conclusion: ZnO-NPs can be utilised as a potential antifungal agent for the treatment of onychomycosis after more experimental trials.


Assuntos
Flores/química , Fungos/efeitos dos fármacos , Nanopartículas Metálicas/administração & dosagem , Onicomicose/microbiologia , Extratos Vegetais/química , Rosa/química , Óxido de Zinco/administração & dosagem , Antifúngicos , Produtos Biológicos , Sobrevivência Celular/efeitos dos fármacos , Cosméticos/administração & dosagem , Cosméticos/síntese química , Cosméticos/metabolismo , Relação Dose-Resposta a Droga , Composição de Medicamentos , Fungos/fisiologia , Humanos , Teste de Materiais , Nanopartículas Metálicas/ultraestrutura , Unhas , Onicomicose/tratamento farmacológico , Onicomicose/patologia , Pintura , Tamanho da Partícula , Extratos Vegetais/administração & dosagem , Resultado do Tratamento
19.
Water Res ; 124: 388-397, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28780361

RESUMO

Efficient sewage treatment is critical for limiting environmental transmission of antibiotic-resistant bacteria. In many low and middle income countries, however, large proportions of sewage are still released untreated into receiving water bodies. In-depth knowledge of how such discharges of untreated urban waste influences the environmental resistome is largely lacking. Here, we highlight the impact of uncontrolled discharge of partially treated and/or untreated wastewater on the structure of bacterial communities and resistome of sediments collected from Mutha river flowing through Pune city in India. Using shotgun metagenomics, we found a wide array (n = 175) of horizontally transferable antibiotic resistance genes (ARGs) including carbapenemases such as NDM, VIM, KPC, OXA-48 and IMP types. The relative abundance of total ARGs was 30-fold higher in river sediments within the city compared to upstream sites. Forty four ARGs, including the tet(X) gene conferring resistance to tigecycline, OXA-58 and GES type carbapenemases, were significantly more abundant in city sediments, while two ARGs were more common at upstream sites. The recently identified mobile colistin resistance gene mcr-1 was detected only in one of the upstream samples, but not in city samples. In addition to ARGs, higher abundances of various mobile genetic elements were found in city samples, including integron-associated integrases and ISCR transposases, as well as some biocide/metal resistance genes. Virulence toxin genes as well as bacterial genera comprising many pathogens were more abundant here; the genus Acinetobacter, which is often associated with multidrug resistance and nosocomial infections, comprised up to 29% of the 16S rRNA reads, which to our best knowledge is unmatched in any other deeply sequenced metagenome. There was a strong correlation between the abundance of Acinetobacter and the OXA-58 carbapenemase gene. Our study shows that uncontrolled discharge of untreated urban waste can contribute to an overall increase of the abundance and diversity of ARGs in the environment, including those conferring resistance to last-resort antibiotics.


Assuntos
Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Abastecimento de Água , Cidades , Infecção Hospitalar , Monitoramento Ambiental , Sedimentos Geológicos , Índia , RNA Ribossômico 16S , Rios
20.
AMB Express ; 6(1): 40, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27299740

RESUMO

Sponges are primitive metazoans that are known to harbour diverse and abundant microbes. All over the world attempts are being made to exploit these microbes for their biotechnological potential to produce, bioactive compounds and antimicrobial peptides. However, the majority of the studies are focussed on the marine sponges and studies on the freshwater sponges have been neglected so far. To increase our understanding of the microbial community structure of freshwater sponges, microbiota of two fresh water sponges namely, Eunapius carteri and Corvospongilla lapidosa is explored for the first time using Next Generation Sequencing (NGS) technology. Overall the microbial composition of these sponges comprises of 14 phyla and on an average, more than 2900 OTUs were obtained from C. lapidosa while E. carteri showed 980 OTUs which is higher than OTUs obtained in the marine sponges. Thus, our study showed that, fresh water sponges also posses highly diverse microbial community than previously thought and it is distinct from the marine sponge microbiota. The present study also revealed that microbial community structure of both the sponges is significantly different from each other and their respective water samples. In the present study, we have detected many bacterial lineages belonging to Firmicutes, Actinobacteria, Proteobacteria, Planctomycetes, etc. that are known to produce compounds of biotechnological importance. Overall, this study gives insight into the microbial composition of the freshwater sponges which is highly diverse and needs to be studied further to exploit their biotechnological capabilities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA