Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 297(3): 101042, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34358561

RESUMO

Prolonged immune activation drives the upregulation of multiple checkpoint receptors on the surface of virus-specific T cells, inducing their exhaustion. Reversing HIV-1-induced T cell exhaustion is imperative for efficient virus clearance; however, viral mediators of checkpoint receptor upregulation remain largely unknown. The enrichment of checkpoint receptors on T cells upon HIV-1 infection severely constrains the generation of an efficient immune response. Herein, we examined the role of HIV-1 Nef in mediating the upregulation of checkpoint receptors on peripheral blood mononuclear cells. We demonstrate that the HIV-1 accessory protein Nef upregulates cell surface levels of the checkpoint receptor T-cell immunoglobulin mucin domain-3 (Tim-3) and that this is dependent on Nef's dileucine motif LL164/165. Furthermore, we used a bimolecular fluorescence complementation assay to demonstrate that Nef and Tim-3 form a complex within cells that is abrogated upon mutation of the Nef dileucine motif. We also provide evidence that Nef moderately promotes Tim-3 shedding from the cell surface in a dileucine motif-dependent manner. Treating HIV-1-infected CD4+ T cells with a matrix metalloprotease inhibitor enhanced cell surface Tim-3 levels and reduced Tim-3 shedding. Finally, Tim-3-expressing CD4+ T cells displayed a higher propensity to release the proinflammatory cytokine interferon-gamma. Collectively, our findings uncover a novel mechanism by which HIV-1 directly increases the levels of a checkpoint receptor on the surface of infected CD4+ T cells.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Infecções por HIV/metabolismo , HIV-1/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/genética , Receptor Celular 2 do Vírus da Hepatite A/genética , Interações Hospedeiro-Patógeno , Humanos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/virologia , Ligação Proteica , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética
2.
Sci Rep ; 12(1): 7010, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35487958

RESUMO

The worldwide COVID-19 pandemic caused by the SARS-CoV-2 betacoronavirus has highlighted the need for a synthetic biology approach to create reliable and scalable sources of viral antigen for uses in diagnostics, therapeutics and basic biomedical research. Here, we adapt plasmid-based systems in the eukaryotic microalgae Phaeodactylum tricornutum to develop an inducible overexpression system for SARS-CoV-2 proteins. Limiting phosphate and iron in growth media induced expression of the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein from the P. tricornutum HASP1 promoter in the wild-type strain and in a histidine auxotrophic strain that alleviates the requirement for antibiotic selection of expression plasmids. The RBD was purified from whole cell extracts (algae-RBD) with yield compromised by the finding that 90-95% of expressed RBD lacked the genetically encoded C-terminal 6X-histidine tag. Constructs that lacked the TEV protease site between the RBD and C-terminal 6X-histidine tag retained the tag, increasing yield. Purified algae-RBD was found to be N-linked glycosylated by treatment with endoglycosidases, was cross-reactive with anti-RBD polyclonal antibodies, and inhibited binding of recombinant RBD purified from mammalian cell lines to the human ACE2 receptor. We also show that the algae-RBD can be used in a lateral flow assay device to detect SARS-CoV-2 specific IgG antibodies from donor serum at sensitivity equivalent to assays performed with RBD made in mammalian cell lines. Our study shows that P. tricornutum is a scalable system with minimal biocontainment requirements for the inducible production of SARS-CoV-2 or other coronavirus antigens for pandemic diagnostics.


Assuntos
COVID-19 , Diatomáceas , Animais , COVID-19/diagnóstico , Diatomáceas/genética , Diatomáceas/metabolismo , Histidina , Humanos , Mamíferos/metabolismo , Glicoproteínas de Membrana/metabolismo , Pandemias , Fosfatos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA