Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Genomics ; 115(3): 110598, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36906188

RESUMO

Muscle growth in teleosts is a complex biological process orchestrated by numerous protein-coding genes and non-coding RNAs. A few recent studies suggest that circRNAs are involved in teleost myogenesis, but the molecular networks involved remain poorly understood. In this study, an integrative omics approach was used to determine myogenic circRNAs in Nile tilapia by quantifying and comparing the expression profile of mRNAs, miRNAs, and circRNAs in fast muscle from full-sib fish with distinct growth rates. There were 1947 mRNAs, 9 miRNAs, and 4 circRNAs differentially expressed between fast- and slow-growing individuals. These miRNAs can regulate myogenic genes and have binding sites for the novel circRNA circMef2c. Our data indicate that circMef2c may interact with three miRNAs and 65 differentially expressed mRNAs to form multiple competing endogenous RNA networks that regulate growth, thus providing novel insights into the role of circRNAs in the regulation of muscle growth in teleosts.


Assuntos
Ciclídeos , MicroRNAs , Animais , RNA Circular/genética , Ciclídeos/genética , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Músculos/metabolismo , Redes Reguladoras de Genes
2.
BMC Bioinformatics ; 24(1): 205, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208611

RESUMO

BACKGROUND: Circular RNAs (circRNAs) are covalently closed-loop RNAs with critical regulatory roles in cells. Tens of thousands of circRNAs have been unveiled due to the recent advances in high throughput RNA sequencing technologies and bioinformatic tools development. At the same time, polymerase chain reaction (PCR) cross-validation for circRNAs predicted by bioinformatic tools remains an essential part of any circRNA study before publication. RESULTS: Here, we present the CircPrime web-based platform, providing a user-friendly solution for DNA primer design and thermocycling conditions for circRNA identification with routine PCR methods. CONCLUSIONS: User-friendly CircPrime web platform ( http://circprime.elgene.net/ ) works with outputs of the most popular bioinformatic predictors of circRNAs to design specific circular RNA primers. CircPrime works with circRNA coordinates and any reference genome from the National Center for Biotechnology Information database).


Assuntos
RNA Circular , RNA , RNA Circular/genética , RNA/genética , Análise de Sequência de RNA/métodos , Reação em Cadeia da Polimerase , Biologia Computacional/métodos , Internet
3.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047078

RESUMO

Although the exact mechanism of the pathogenesis of coronavirus SARS-CoV-2 (COVID-19) is not fully understood, oxidative stress and the release of pro-inflammatory cytokines have been highlighted as playing a vital role in the pathogenesis of the disease. In this sense, alternative treatments are needed to reduce the level of inflammation caused by COVID-19. Therefore, this study aimed to investigate the potential effect of red photobiomodulation (PBM) as an attractive therapy to downregulate the cytokine storm caused by COVID-19 in a zebrafish model. RT-qPCR analyses and protein-protein interaction prediction among SARS-CoV-2 and Danio rerio proteins showed that recombinant Spike protein (rSpike) was responsible for generating systemic inflammatory processes with significantly increased levels of pro-inflammatory (il1b, il6, tnfa, and nfkbiab), oxidative stress (romo1) and energy metabolism (slc2a1a and coa1) mRNA markers, with a pattern similar to those observed in COVID-19 cases in humans. On the other hand, PBM treatment was able to decrease the mRNA levels of these pro-inflammatory and oxidative stress markers compared with rSpike in various tissues, promoting an anti-inflammatory response. Conversely, PBM promotes cellular and tissue repair of injured tissues and significantly increases the survival rate of rSpike-inoculated individuals. Additionally, metabolomics analysis showed that the most-impacted metabolic pathways between PBM and the rSpike treated groups were related to steroid metabolism, immune system, and lipid metabolism. Together, our findings suggest that the inflammatory process is an incisive feature of COVID-19 and red PBM can be used as a novel therapeutic agent for COVID-19 by regulating the inflammatory response. Nevertheless, the need for more clinical trials remains, and there is a significant gap to overcome before clinical trials can commence.


Assuntos
COVID-19 , Animais , Humanos , Peixe-Zebra/metabolismo , SARS-CoV-2/metabolismo , Síndrome da Liberação de Citocina , Citocinas/metabolismo , RNA Mensageiro , Proteínas de Membrana , Proteínas Mitocondriais
4.
Fish Shellfish Immunol ; 124: 244-253, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35421573

RESUMO

Bacillus spp. supplementation as probiotics in cultured fish diets has a long history of safe and effective use. Specifically, B. velezensis show great promise in fine-tuning the European sea bass disease resistance against the pathogenicity caused by several members of the Vibrio family. However, the immunomodulatory mechanisms behind this response remain poorly understood. Here, to examine the inherent immune variations in sea bass, two equal groups were fed for 30 days with a steady diet, with one treatment supplemented with B. velezensis. The serum bactericidal capacity against live cells of Vibrio anguillarum strain 507 and the nitric oxide and lysozyme lytic activities were assayed. At the cellular level, the phagocytic response of peripheral blood leukocytes against inactivated Candida albicans was determined. Moreover, head-kidney (HK) total leukocytes were isolated from previously in vivo treated fish with LPS of V. anguillarum strain 507. Mechanistically, the expression of some essential proinflammatory genes (interleukin-1 (il1b), tumor necrosis factor-alpha (tnfa), and cyclooxygenase 2 (cox2) and the sea bass specific antimicrobial peptide (AMP) dicentracin (dic) expressions were assessed. Surprisingly, the probiotic supplementation significantly increased all humoral lytic and cellular activities assayed in the treated sea bass. In addition, time-dependent differences were observed between the control and probiotic treated groups for all the HK genes markers subjected to the sublethal LPS dose. Although the il1b was the fastest responding gene to a significant level at 48 h post-injection (hpi), all the other genes followed 72 h in the probiotic supplemented group. Finally, an in vivo bacteria challenge against live V. anguillarum was conducted. The probiotic fed fish observed a significantly higher survival. Overall, our results provide clear vertical evidence on the beneficial immune effects of B. velezensis and unveil some fundamental immune mechanisms behind its application as a probiotic agent in intensively cultured European sea bass.


Assuntos
Bacillus , Bass , Doenças dos Peixes , Vibrioses , Animais , Suplementos Nutricionais , Resistência à Doença , Lipopolissacarídeos , Vibrio , Vibrioses/veterinária
5.
Proc Natl Acad Sci U S A ; 116(25): 12428-12436, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31160464

RESUMO

The nervous system regulates host immunity in complex ways. Vertebrate olfactory sensory neurons (OSNs) are located in direct contact with pathogens; however, OSNs' ability to detect danger and initiate immune responses is unclear. We report that nasal delivery of rhabdoviruses induces apoptosis in crypt OSNs via the interaction of the OSN TrkA receptor with the viral glycoprotein in teleost fish. This signal results in electrical activation of neurons and very rapid proinflammatory responses in the olfactory organ (OO), but dampened inflammation in the olfactory bulb (OB). CD8α+ cells infiltrate the OO within minutes of nasal viral delivery, and TrkA blocking, but not caspase-3 blocking, abrogates this response. Infiltrating CD8α+ cells were TCRαß T cells with a nonconventional phenotype that originated from the microvasculature surrounding the OB and not the periphery. Nasal delivery of viral glycoprotein (G protein) recapitulated the immune responses observed with the whole virus, and antibody blocking of viral G protein abrogated these responses. Ablation of crypt neurons in zebrafish resulted in increased susceptibility to rhabdoviruses. These results indicate a function for OSNs as a first layer of pathogen detection in vertebrates and as orchestrators of nasal-CNS antiviral immune responses.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vírus da Necrose Hematopoética Infecciosa/imunologia , Neurônios Receptores Olfatórios/fisiologia , Receptor trkA/metabolismo , Animais , Apoptose , Caspase 3/metabolismo , Mucosa Nasal/imunologia , Mucosa Nasal/virologia , Neurônios Receptores Olfatórios/citologia , Neurônios Receptores Olfatórios/virologia , Oncorhynchus mykiss
6.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638776

RESUMO

Therapeutic bacteriophages, commonly called as phages, are a promising potential alternative to antibiotics in the management of bacterial infections of a wide range of organisms including cultured fish. Their natural immunogenicity often induces the modulation of a variated collection of immune responses within several types of immunocytes while promoting specific mechanisms of bacterial clearance. However, to achieve standardized treatments at the practical level and avoid possible side effects in cultivated fish, several improvements in the understanding of their biology and the associated genomes are required. Interestingly, a particular feature with therapeutic potential among all phages is the production of lytic enzymes. The use of such enzymes against human and livestock pathogens has already provided in vitro and in vivo promissory results. So far, the best-understood phages utilized to fight against either Gram-negative or Gram-positive bacterial species in fish culture are mainly restricted to the Myoviridae and Podoviridae, and the Siphoviridae, respectively. However, the current functional use of phages against bacterial pathogens of cultured fish is still in its infancy. Based on the available data, in this review, we summarize the current knowledge about phage, identify gaps, and provide insights into the possible bacterial control strategies they might represent for managing aquaculture-related bacterial diseases.


Assuntos
Infecções Bacterianas/terapia , Myoviridae , Terapia por Fagos , Podoviridae , Siphoviridae , Animais , Infecções Bacterianas/virologia , Humanos
7.
Int J Mol Sci ; 22(13)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34281172

RESUMO

Circular RNAs (circRNAs) are an emerging class of regulatory RNAs with a covalently closed-loop structure formed during pre-mRNA splicing. Recent advances in high-throughput RNA sequencing and circRNA-specific computational tools have driven the development of novel approaches to their identification and functional characterization. CircRNAs are stable, developmentally regulated, and show tissue- and cell-type-specific expression across different taxonomic groups. They play a crucial role in regulating various biological processes at post-transcriptional and translational levels. However, the involvement of circRNAs in fish immunity has only recently been recognized. There is also broad evidence in mammals that the timely expression of circRNAs in muscle plays an essential role in growth regulation but our understanding of their expression and function in teleosts is still very limited. Here, we discuss the available knowledge about circRNAs and their role in growth and immunity in vertebrates from a comparative perspective, with emphasis on cultured teleost fish. We expect that the interest in teleost circRNAs will increase substantially soon, and we propose that they may be used as biomarkers for selective breeding of farmed fish, thus contributing to the sustainability of the aquaculture sector.


Assuntos
Aquicultura/métodos , Peixes/genética , RNA Circular/genética , Animais , Biomarcadores , Peixes/crescimento & desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Imunidade/genética , RNA/genética , Splicing de RNA/genética , RNA Circular/análise
8.
Fish Shellfish Immunol ; 85: 31-43, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29510253

RESUMO

A key goal of a successful vaccine formulation is the strong induction of persistent protective immune responses without producing side-effects. Adjuvants have been proved to be successful in several species at inducing increased immune responses against poorly immunogenic antigens. Fish are not the exception and promising results of adjuvanted vaccine formulations in many species are needed. In this study, over a period of 300 days, we characterized the apparent damage and immune response in gilthead seabream immunized by intraperitoneal injection with the model antigen keyhole limpet hemocyanin (KLH) alone or formulated with Montanide ISA water-in-oil (761 or 763), or Imject™ aluminum hydroxide (aluminium), as adjuvants. Throughout the trial, external tissue damage was examined visually, but no change was observed. Internally, severe adhesions, increased fat tissue, and hepatomegaly were recorded, but, without impairing animal health. At 120 days post priming (dpp), histopathological evaluations of head-kidney, spleen and liver revealed the presence of altered melanomacrophage centers (MMC) in HK and spleen, but not in liver. Surprisingly, in all aluminium treated fish, classical stains unmasked a toxic effect on splenic-MMC, unequivocally characterized by a strong cell depletion. Furthermore, at 170 dpp transmission electron microscopy confirmed this data. Paradoxically, at the same time powerful immune responses were recorded in most vaccinated groups, including the aluminium treatment. Whatever the case, despite the observed adhesions and MMC depletion, fish physiology was not affected, and most side-effects were resolved after 300 dpp. Therefore, our data support adjuvant inclusion, but strongly suggest that use of aluminium must be further explored in detail before it might benefit the rational design of new vaccination strategies in aquaculture.


Assuntos
Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/toxicidade , Alumínio/farmacologia , Alumínio/toxicidade , Macrófagos/efeitos dos fármacos , Dourada/imunologia , Animais , Hemocianinas/administração & dosagem , Hemocianinas/imunologia , Imunização/veterinária , Injeções Intraperitoneais/veterinária , Microscopia Eletrônica de Transmissão/veterinária , Baço/efeitos dos fármacos , Baço/metabolismo
9.
J Immunol ; 196(2): 738-49, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26673139

RESUMO

As an organism is exposed to pathogens during very early development, specific defense mechanisms must take effect. In this study, we used a germ-free zebrafish embryo model to show that osmotic stress regulates the activation of immunity and host protection in newly hatched embryos. Mechanistically, skin keratinocytes were responsible for both sensing the hyposmolarity of the aquatic environment and mediating immune effector mechanisms. This occurred through a transient potential receptor vanilloid 4/Ca(2+)/TGF-ß-activated kinase 1/NF-κB signaling pathway. Surprisingly, the genes encoding antimicrobial effectors, which do not have the potential to cause tissue damage, are constitutively expressed during development, independently of both commensal microbes and osmotic stress. Our results reveal that osmotic stress is associated with the induction of developmental immunity in the absence of tissue damage and point out to the embryo skin as the first organ with full capacities to mount an innate immune response.


Assuntos
Imunidade Inata/imunologia , Queratinócitos/imunologia , Pele/embriologia , Canais de Cátion TRPV/imunologia , Proteínas de Peixe-Zebra/imunologia , Peixe-Zebra/embriologia , Peixe-Zebra/imunologia , Animais , Embrião não Mamífero/imunologia , Imunofluorescência , Pressão Osmótica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Pele/imunologia , Transcriptoma , Transfecção
10.
Int J Mol Sci ; 19(4)2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29617353

RESUMO

Genome wide studies based on conventional molecular tools and upcoming omics technologies are beginning to gain functional applications in the control and prevention of diseases in teleosts fish. Herein, we provide insights into current progress and prospects in the use genomics studies for the control and prevention of fish diseases. Metagenomics has emerged to be an important tool used to identify emerging infectious diseases for the timely design of rational disease control strategies, determining microbial compositions in different aquatic environments used for fish farming and the use of host microbiota to monitor the health status of fish. Expounding the use of antimicrobial peptides (AMPs) as therapeutic agents against different pathogens as well as elucidating their role in tissue regeneration is another vital aspect of genomics studies that had taken precedent in recent years. In vaccine development, prospects made include the identification of highly immunogenic proteins for use in recombinant vaccine designs as well as identifying gene signatures that correlate with protective immunity for use as benchmarks in optimizing vaccine efficacy. Progress in quantitative trait loci (QTL) mapping is beginning to yield considerable success in identifying resistant traits against some of the highly infectious diseases that have previously ravaged the aquaculture industry. Altogether, the synopsis put forth shows that genomics studies are beginning to yield positive contribution in the prevention and control of fish diseases in aquaculture.


Assuntos
Peixes/genética , Genoma , Genômica , Animais , Peptídeos Catiônicos Antimicrobianos/biossíntese , Peptídeos Catiônicos Antimicrobianos/farmacologia , Antivirais/metabolismo , Antivirais/farmacologia , Resistência à Doença/genética , Resistência à Doença/imunologia , Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/metabolismo , Doenças dos Peixes/prevenção & controle , Peixes/metabolismo , Predisposição Genética para Doença , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Vacinas
12.
Proc Natl Acad Sci U S A ; 109(39): E2605-14, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-22949679

RESUMO

How fish larvae are protected from infection before the maturation of adaptive immunity, a process which may take up to several weeks in most species, has long been a matter of speculation. Using a germ-free model, we show that colonization by commensals in newly hatched zebrafish primes neutrophils and induces several genes encoding proinflammatory and antiviral mediators, increasing the resistance of larvae to viral infection. Commensal microbe recognition was found to be mediated mainly through a TLR/MyD88 signaling pathway, and professional phagocytes were identified as the source of these immune mediators. However, the induction of proinflammatory and antiviral genes, but not of antimicrobial effector genes, also required the covalent modification of histone H3 at gene promoters. Interestingly, chromatin modifications were not altered by commensal microbes or hatching. Taken together, our results demonstrate that gene-specific chromatin modifications are associated with the protection of zebrafish larvae against infectious agents before adaptive immunity has developed and prevent pathologies associated with excessive inflammation during development.


Assuntos
Bactérias/imunologia , Cromatina/imunologia , Vida Livre de Germes/imunologia , Fator 88 de Diferenciação Mieloide/imunologia , Receptores Toll-Like/imunologia , Proteínas de Peixe-Zebra/imunologia , Peixe-Zebra/imunologia , Animais , Cromatina/genética , Cromatina/metabolismo , Vida Livre de Germes/genética , Histonas/genética , Histonas/imunologia , Histonas/metabolismo , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/microbiologia , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Peixe-Zebra/classificação , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
13.
Microorganisms ; 12(5)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38792721

RESUMO

Amid growing concerns about antibiotic resistance, innovative strategies are imperative in addressing bacterial infections in aquaculture. Quorum quenching (QQ), the enzymatic inhibition of quorum sensing (QS), has emerged as a promising solution. This study delves into the QQ capabilities of the probiotic strain Bacillus velezensis D-18 and its products, particularly in Vibrio anguillarum 507 communication and biofilm formation. Chromobacterium violaceum MK was used as a biomarker in this study, and the results confirmed that B. velezensis D-18 effectively inhibits QS. Further exploration into the QQ mechanism revealed the presence of lactonase activity by B. velezensis D-18 that degraded both long- and short-chain acyl homoserine lactones (AHLs). PCR analysis demonstrated the presence of a homologous lactonase-producing gene, ytnP, in the genome of B. velezensis D-18. The study evaluated the impact of B. velezensis D-18 on V. anguillarum 507 growth and biofilm formation. The probiotic not only controls the biofilm formation of V. anguillarum but also significantly restrains pathogen growth. Therefore, B. velezensis D-18 demonstrates substantial potential for preventing V. anguillarum diseases in aquaculture through its QQ capacity. The ability to disrupt bacterial communication and control biofilm formation positions B. velezensis D-18 as a promising eco-friendly alternative to conventional antibiotics in managing bacterial diseases in aquaculture.

14.
Fish Shellfish Immunol ; 35(4): 1260-71, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23932985

RESUMO

Vibrio anguillarum is the main causative agent of vibriosis in cultured sea bass. Unfortunately, available vaccines against this disease do not achieve the desired protection. In this study, to accomplish uptake, processing, and presentation of luminal antigens, a commercial sea bass oral vaccine against V. anguillarum was improved with the addition of recombinant fish-self tumor necrosis factor α (rTNFα), as adjuvant. To explore mechanisms, systemic and local responses were analyzed through serum specific IgM titers, gene expression, lymphocytes spatial distribution in the gut, and in vitro functional assays. We found along the trial, over expressed transcripts of genes encoding cytokines and antimicrobial molecules at the gut of rTNFα supplied group. Orally immunized fish with vaccine alone confer protection against V. anguillarum challenge throughout a short time period. In contrast, adjuvant-treated group significantly extended the response. In both cases, achieved protection was independent of serum IgM. Yet, IgT transcripts were found to increase in the gut of rTNFα-treated fish. More importantly, fish treated with rTNFα showed a dramatic change of their T lymphocytes distribution and localization in gut mucosal tissue, suggesting specific antigen recognition and further intraepithelial T lymphocytes (IEL) activation. To determine the mechanism behind IEL infiltration, we characterized the constitutive and activated pattern of chemokines in sea bass hematopoietic tissues, identifying for the first time in fish gut, an intimate relation between the chemokine ligand/receptor CCL25/CCR9. Ex-vivo, chemotaxis analyses confirmed these findings. Together, our results demonstrate that improved oral vaccines targeting key cytokines may provide a means to selectively modulate fish immune defence.


Assuntos
Vacinas Bacterianas/metabolismo , Bass , Doenças dos Peixes/prevenção & controle , Imunidade Inata , Vibrioses/veterinária , Vibrio/imunologia , Animais , Aquicultura , Quimiocinas CC/metabolismo , Doenças dos Peixes/microbiologia , Proteínas de Peixes/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Receptores CCR/metabolismo , Proteínas Recombinantes/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Vibrioses/microbiologia , Vibrioses/prevenção & controle
16.
Sci Rep ; 13(1): 8060, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198208

RESUMO

Despite all efforts to combat the pandemic of COVID-19, we are still living with high numbers of infected persons, an overburdened health care system, and the lack of an effective and definitive treatment. Understanding the pathophysiology of the disease is crucial for the development of new technologies and therapies for the best clinical management of patients. Since the manipulation of the whole virus requires a structure with an adequate level of biosafety, the development of alternative technologies, such as the synthesis of peptides from viral proteins, is a possible solution to circumvent this problem. In addition, the use and validation of animal models is of extreme importance to screen new drugs and to compress the organism's response to the disease. Peptides derived from recombinant S protein from SARS-CoV-2 were synthesized and validated by in silico, in vitro and in vivo methodologies. Macrophages and neutrophils were challenged with the peptides and the production of inflammatory mediators and activation profile were evaluated. These peptides were also inoculated into the swim bladder of transgenic zebrafish larvae at 6 days post fertilization (dpf) to mimic the inflammatory process triggered by the virus, which was evaluated by confocal microscopy. In addition, toxicity and oxidative stress assays were also developed. In silico and molecular dynamics assays revealed that the peptides bind to the ACE2 receptor stably and interact with receptors and adhesion molecules, such as MHC and TCR, from humans and zebrafish. Macrophages stimulated with one of the peptides showed increased production of NO, TNF-α and CXCL2. Inoculation of the peptides in zebrafish larvae triggered an inflammatory process marked by macrophage recruitment and increased mortality, as well as histopathological changes, similarly to what is observed in individuals with COVID-19. The use of peptides is a valuable alternative for the study of host immune response in the context of COVID-19. The use of zebrafish as an animal model also proved to be appropriate and effective in evaluating the inflammatory process, comparable to humans.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Peixe-Zebra , Macrófagos , Peptídeos
17.
Front Genet ; 13: 863547, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092944

RESUMO

Interspecific hybridization has occurred relatively frequently during the evolution of vertebrates. This process usually abolishes reproductive isolation between the parental species. Moreover, it results in the exchange of genetic material and can lead to hybridogenic speciation. Hybridization between species has predominately been observed at the interspecific level, whereas intergeneric hybridization is rarer. Here, using whole-genome sequencing analysis, we describe clear and reliable signals of intergeneric introgression between the three-spined stickleback (Gasterosteus aculeatus) and its distant mostly freshwater relative the nine-spined stickleback (Pungitius pungitius) that inhabit northwestern Russia. Through comparative analysis, we demonstrate that such introgression phenomena apparently take place in the moderate-salinity White Sea basin, although it is not detected in Japanese sea stickleback populations. Bioinformatical analysis of the sites influenced by introgression showed that they are located near transposable elements, whereas those in protein-coding sequences are mostly found in membrane-associated and alternative splicing-related genes.

18.
Genes (Basel) ; 13(10)2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36292743

RESUMO

Pacific herring (Clupea pallasii) is an essential target of commercial fishing in the North Pacific Ocean. Previous studies have suggested the existence of marine and lake ecological forms of this species within its range. The lake ecological form of herring has a shortened life cycle, spending the winter and spawning in brackish waters near the shoreline without long migrations for feeding; it also has a relatively smaller body size than the marine form. Genetic-based studies have shown that brackish water Pacific herring not only can be distinguished as a separate lake ecological form but possibly has its genetic legacy. Here, as part of an ongoing study, using ddRAD-sequencing data for marine and lake ecological forms from a total of 54 individuals and methods of comparative bioinformatics, we describe genomic signatures of freshwater adaptivity in Pacific herring. In total, 253 genes containing discriminating SNPs were found, and part of those genes was organized into genome clusters, also known as "genomic islands of divergence". Moreover, the Tajima's D test showed that these loci are under directional selection in the lake populations of the Pacific herring. Yet, most discriminating loci between the lake and marine ecological forms of Pacific herring do not intersect (by gene name) with those in other known marine fish species with known freshwater/brackish populations. However, some are associated with the same physiological trait-osmoregulation.


Assuntos
Adaptação Fisiológica , Lagos , Animais , Adaptação Fisiológica/genética , Oceano Pacífico , Genômica
19.
Front Immunol ; 13: 1019201, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248846

RESUMO

Regulation of inflammation is a critical process for maintaining physiological homeostasis. The λ-carrageenan (λ-CGN) is a mucopolysaccharide extracted from the cell wall of red algae (Chondrus crispus) capable of inducing acute intestinal inflammation, which is translated into the production of acute phase reactants secreted into the blood circulation. However, the associated mechanisms in vertebrates are not well understood. Here, we investigated the crucial factors behind the inflammatory milieu of λ-CGN-mediated inflammation administered at 0, 1.75, and 3.5% (v/w) by i.p. injection into the peritoneal cavity of adult zebrafish (ZF) (Danio rerio). We found that polymorphonuclear leukocytes (neutrophils) and lymphocytes infiltrating the ZF peritoneal cavity had short-term persistence. Nevertheless, they generate a strong pattern of inflammation that affects systemically and is enough to produce edema in the cavity. Consistent with these findings, cell infiltration, which causes notable tissue changes, resulted in the overexpression of several acute inflammatory markers at the protein level. Using reversed-phase high-performance liquid chromatography followed by a hybrid linear ion-trap mass spectrometry shotgun proteomic approach, we identified 2938 plasma proteins among the animals injected with PBS and 3.5% λ-CGN. First, the bioinformatic analysis revealed the composition of the plasma proteome. Interestingly, 72 commonly expressed proteins were recorded among the treated and control groups, but, surprisingly, 2830 novel proteins were differentially expressed exclusively in the λ-CGN-induced group. Furthermore, from the commonly expressed proteins, compared to the control group 62 proteins got a significant (p < 0.05) upregulation in the λ-CGN-treated group, while the remaining ten proteins were downregulated. Next, we obtained the major protein-protein interaction networks between hub protein clusters in the blood plasma of the λ-CGN induced group. Moreover, to understand the molecular underpinnings of these effects based on the unveiled protein sets, we performed a bioinformatic structural similarity analysis and generated overlapping 3D reconstructions between ZF and humans during acute inflammation. Biological pathway analysis pointed to the activation and abundance of diverse classical immune and acute phase reactants, several catalytic enzymes, and varied proteins supporting the immune response. Together, this information can be used for testing and finding novel pharmacological targets to treat human intestinal inflammatory diseases.


Assuntos
Leucócitos , Proteoma , Peixe-Zebra , Proteínas de Fase Aguda , Animais , Carragenina/metabolismo , Glicosaminoglicanos , Humanos , Inflamação/induzido quimicamente , Neutrófilos/metabolismo , Plasma/metabolismo , Proteômica , Peixe-Zebra/metabolismo
20.
Front Immunol ; 12: 695973, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220858

RESUMO

Aquaculture growth will unavoidably involve the implementation of innovative and sustainable production strategies, being functional feeds among the most promising ones. A wide spectrum of phytogenics, particularly those containing terpenes and organosulfur compounds, are increasingly studied in aquafeeds, due to their growth promoting, antimicrobial, immunostimulant, antioxidant, anti-inflammatory and sedative properties. This trend relies on the importance of the mucosal barrier in the fish defense. Establishing the phytogenics' mode of action in mucosal tissues is of importance for further use and safe administration. Although the impact of phytogenics upon fish mucosal immunity has been extensively approached, most of the studies fail in addressing the mechanisms underlying their pharmacological effects. Unstandardized testing as an extended practice also questions the reproducibility and safety of such studies, limiting the use of phytogenics at commercial scale. The information presented herein provides insight on the fish mucosal immune responses to phytogenics, suggesting their mode of action, and ultimately encouraging the practice of reliable and reproducible research for novel feed additives for aquafeeds. For proper screening, characterization and optimization of their mode of action, we encourage the evaluation of purified compounds using in vitro systems before moving forward to in vivo trials. The formulation of additives with combinations of compounds previously characterized is recommended to avoid bacterial resistance. To improve the delivery of phytogenics and overcome limitations associated to compounds volatility and susceptibility to degradation, the use of encapsulation is advisable. Besides, newer approaches and dedicated methodologies are needed to elucidate the phytogenics pharmacokinetics and mode of action in depth.


Assuntos
Ração Animal , Suplementos Nutricionais , Pesqueiros , Peixes/imunologia , Sistema Imunitário/efeitos dos fármacos , Imunidade nas Mucosas/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Animais , Peixes/crescimento & desenvolvimento , Peixes/metabolismo , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Compostos Fitoquímicos/imunologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA