Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Org Biomol Chem ; 22(20): 4135-4144, 2024 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-38712466

RESUMO

Herein, we present an innovative synthetic approach for producing a diverse set of biobased oligomers. This method begins with olive oil and employs a wide variety of commercially available amino acids (AAs) as bio-organocatalysts, in addition to tetrabutylammonium iodide (TBAI) as a cocatalyst, to synthesize various biobased oligomers. These biobased oligomers were strategically prepared starting from epoxidized olive oil (EOO) and a variety of cyclic anhydrides (phthalic, PA; maleic, MA; succinic, SA; and glutaric, GA). Among the amino acids tested as bio-organocatalysts, L-glutamic acid (L-Glu) showed the best performance for the synthesis of both poly(EOO-co-PA) and poly(EOO-co-MA), exhibiting 100% conversion at 80 °C in 2 hours, whereas the formation of poly(EOO-co-SA) and poly(EOO-co-GA) required more extreme reaction conditions (72 hours under toluene reflux conditions). Likewise, we have succeeded in obtaining the trans isomer exclusively for the MA based-oligomer within the same synthetic framework. The obtained oligomers were extensively characterized using techniques including NMR, FT-IR, GPC and TGA. A series of computational simulations based on density functional theory (DFT) and post-Hartree Fock (post-HF) methods were performed to corroborate our experimental findings and to obtain an understanding of the reaction mechanisms.


Assuntos
Aminoácidos , Polimerização , Catálise , Aminoácidos/química , Aminoácidos/síntese química , Química Verde , Óleos de Plantas/química , Polímeros/química , Polímeros/síntese química , Estrutura Molecular , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/síntese química
2.
J Chem Phys ; 156(17): 174801, 2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35525649

RESUMO

Accurate and efficient methods to simulate nonadiabatic and quantum nuclear effects in high-dimensional and dissipative systems are crucial for the prediction of chemical dynamics in the condensed phase. To facilitate effective development, code sharing, and uptake of newly developed dynamics methods, it is important that software implementations can be easily accessed and built upon. Using the Julia programming language, we have developed the NQCDynamics.jl package, which provides a framework for established and emerging methods for performing semiclassical and mixed quantum-classical dynamics in the condensed phase. The code provides several interfaces to existing atomistic simulation frameworks, electronic structure codes, and machine learning representations. In addition to the existing methods, the package provides infrastructure for developing and deploying new dynamics methods, which we hope will benefit reproducibility and code sharing in the field of condensed phase quantum dynamics. Herein, we present our code design choices and the specific Julia programming features from which they benefit. We further demonstrate the capabilities of the package on two examples of chemical dynamics in the condensed phase: the population dynamics of the spin-boson model as described by a wide variety of semiclassical and mixed quantum-classical nonadiabatic methods and the reactive scattering of H2 on Ag(111) using the molecular dynamics with electronic friction method. Together, they exemplify the broad scope of the package to study effective model Hamiltonians and realistic atomistic systems.

3.
J Comput Chem ; 41(24): 2151-2157, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32640497

RESUMO

Ribulose 1,5-bisphosphate carboxylase-oxygenase (RuBisCO) is the main enzyme involved in atmospheric carbon dioxide (CO2 ) fixation in the biosphere. This enzyme catalyzes a set of five chemical steps that take place in the same active-site within magnesium (II) coordination sphere. Here, a set of electronic structure benchmark calculations have been carried out on a reaction path proposed by Gready et al. by means of the projector-based embedding approach. Activation and reaction energies for all main steps catalyzed by RuBisCO have been calculated at the MP2, SCS-MP2, CCSD, and CCSD(T)/aug-cc-pVDZ and cc-pVDZ levels of theory. The treatment of the magnesium cation with post-HF methods is explored to determine the nature of its involvement in the mechanism. With the high-level ab initio values as a reference, we tested the performance of a set of density functional theory (DFT) exchange-correlation (xc) functionals in reproducing the reaction energetics of RuBisCO carboxylase activity on a set of model fragments. Different DFT xc-functionals show large variation in activation and reaction energies. Activation and reaction energies computed at the B3LYP level are close to the reference SCS-MP2 results for carboxylation, hydration and protonation reactions. However, for the carbon-carbon bond dissociation reaction, B3LYP and other functionals give results that differ significantly from the ab initio reference values. The results show the applicability of the projector-based embedding approach to metalloenzymes. This technique removes the uncertainty associated with the selection of different DFT xc-functionals and so can overcome some of inherent limitations of DFT calculations, complementing, and potentially adding to modeling of enzyme reaction mechanisms with DFT methods.


Assuntos
Dióxido de Carbono/química , Ribulose-Bifosfato Carboxilase/química , Ciclo do Carbono , Catálise , Domínio Catalítico , Teoria da Densidade Funcional , Eletrônica , Metaloproteínas/química , Modelos Moleculares , Conformação Molecular , Ligação Proteica
4.
Bioinformatics ; 35(8): 1404-1413, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30219844

RESUMO

MOTIVATION: Protein function is regulated by post-translational modifications (PTMs) that may act individually or interact with others in a phenomenon termed PTM cross-talk. Multiple databases have been dedicated to PTMs, including recent initiatives oriented towards the in silico prediction of PTM interactions. The study of PTM cross-talk ultimately requires experimental evidence about whether certain PTMs coexist in a single protein molecule. However, available resources do not assist researchers in the experimental detection of co-modified peptides. RESULTS: Herein, we present TCellXTalk, a comprehensive database of phosphorylation, ubiquitination and acetylation sites in human T cells that supports the experimental detection of co-modified peptides using targeted or directed mass spectrometry. We demonstrate the efficacy of TCellXTalk and the strategy presented here in a proof of concept experiment that enabled the identification and quantification of 15 co-modified (phosphorylated and ubiquitinated) peptides from CD3 proteins of the T-cell receptor complex. To our knowledge, these are the first co-modified peptide sequences described in this widely studied cell type. Furthermore, quantitative data showed distinct dynamics for co-modified peptides upon T cell activation, demonstrating differential regulation of co-occurring PTMs in this biological context. Overall, TCellXTalk facilitates the experimental detection of co-modified peptides in human T cells and puts forward a novel and generic strategy for the study of PTM cross-talk. AVAILABILITY AND IMPLEMENTATION: TCellXTalk is available at https://www.tcellxtalk.org. Source Code is available at https://bitbucket.org/lp-csic-uab/tcellxtalk. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Processamento de Proteína Pós-Traducional , Linfócitos T , Sequência de Aminoácidos , Humanos , Peptídeos , Proteínas
5.
J Comput Chem ; 40(13): 1401-1413, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30770583

RESUMO

Carboxylation reactions represent a very special class of chemical reactions that is characterized by the presence of a carbon dioxide (CO2 ) molecule as reactive species within its global chemical equation. These reactions work as fundamental gear to accomplish the CO2 fixation and thus to build up more complex molecules through different technological and biochemical processes. In this context, a correct description of the CO2 electronic structure turns out to be crucial to study the chemical and electronic properties associated with this kind of reactions. Here, a systematic study of CO2 electronic structure and its contribution to different carboxylation reaction electronic energies has been carried out by means of several high-level ab initio post-Hartree Fock (post-HF) and density functional theory (DFT) calculations for a set of biochemistry and inorganic systems. We have found that for a correct description of the CO2 electronic correlation energy it is necessary to include post-CCSD(T) contributions (beyond the gold standard). These high-order excitations are required to properly describe the interactions of the four π-electrons associated with the two degenerated π-molecular orbitals of the CO2 molecule. Likewise, our results show that in some reactions it is possible to obtain accurate reaction electronic energy values with computationally less demanding methods when the error in the electronic correlation energy compensates between reactants and products. Furthermore, the provided post-HF reference values allowed to validating different DFT exchange-correlation functionals combined with different basis sets for chemical reactions that are relevant in biochemical CO2 fixing enzymes. © 2019 Wiley Periodicals, Inc.


Assuntos
Dióxido de Carbono/química , Ácidos Carboxílicos/química , Teoria da Densidade Funcional , Elétrons
6.
J Chem Phys ; 148(14): 141102, 2018 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-29655322

RESUMO

Nowadays, the search for efficient methods able to reduce the high atmospheric carbon dioxide concentration has turned into a very dynamic research area. Several environmental problems have been closely associated with the high atmospheric level of this greenhouse gas. Here, a novel system based on the use of surface-functionalized silicon quantum dots (sf-SiQDs) is theoretically proposed as a versatile device to bind carbon dioxide. Within this approach, carbon dioxide trapping is modulated by a photoinduced charge redistribution between the capping molecule and the silicon quantum dots (SiQDs). The chemical and electronic properties of the proposed SiQDs have been studied with a Density Functional Theory and Density Functional Tight-Binding (DFTB) approach along with a time-dependent model based on the DFTB framework. To the best of our knowledge, this is the first report that proposes and explores the potential application of a versatile and friendly device based on the use of sf-SiQDs for photochemically activated carbon dioxide fixation.

7.
Proteomics ; 14(20): 2275-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25055762

RESUMO

We present several bioinformatics applications for the identification and quantification of phosphoproteome components by MS. These applications include a front-end graphical user interface that combines several Thermo RAW formats to MASCOT™ Generic Format extractors (EasierMgf), two graphical user interfaces for search engines OMSSA and SEQUEST (OmssaGui and SequestGui), and three applications, one for the management of databases in FASTA format (FastaTools), another for the integration of search results from up to three search engines (Integrator), and another one for the visualization of mass spectra and their corresponding database search results (JsonVisor). These applications were developed to solve some of the common problems found in proteomic and phosphoproteomic data analysis and were integrated in the workflow for data processing and feeding on our LymPHOS database. Applications were designed modularly and can be used standalone. These tools are written in Perl and Python programming languages and are supported on Windows platforms. They are all released under an Open Source Software license and can be freely downloaded from our software repository hosted at GoogleCode.


Assuntos
Mineração de Dados/métodos , Espectrometria de Massas/métodos , Proteômica/métodos , Animais , Bases de Dados de Proteínas , Humanos , Fosfoproteínas/análise , Proteoma/análise , Ferramenta de Busca , Software , Interface Usuário-Computador
8.
J Proteome Res ; 13(1): 158-72, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24138474

RESUMO

The Spanish team of the Human Proteome Project (SpHPP) marked the annotation of Chr16 and data analysis as one of its priorities. Precise annotation of Chromosome 16 proteins according to C-HPP criteria is presented. Moreover, Human Body Map 2.0 RNA-Seq and Encyclopedia of DNA Elements (ENCODE) data sets were used to obtain further information relative to cell/tissue specific chromosome 16 coding gene expression patterns and to infer the presence of missing proteins. Twenty-four shotgun 2D-LC-MS/MS and gel/LC-MS/MS MIAPE compliant experiments, representing 41% coverage of chromosome 16 proteins, were performed. Furthermore, mapping of large-scale multicenter mass spectrometry data sets from CCD18, MCF7, Jurkat, and Ramos cell lines into RNA-Seq data allowed further insights relative to correlation of chromosome 16 transcripts and proteins. Detection and quantification of chromosome 16 proteins in biological matrices by SRM procedures are also primary goals of the SpHPP. Two strategies were undertaken: one focused on known proteins, taking advantage of MS data already available, and the second, aimed at the detection of the missing proteins, is based on the expression of recombinant proteins to gather MS information and optimize SRM methods that will be used in real biological samples. SRM methods for 49 known proteins and for recombinant forms of 24 missing proteins are reported in this study.


Assuntos
Cromossomos Humanos Par 16 , Proteoma , Transcriptoma , Cromatografia Líquida , Humanos , Espectrometria de Massas , Análise de Sequência de RNA
9.
mBio ; : e0207823, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888367

RESUMO

Temperate phage-mediated horizontal gene transfer is a potent driver of genetic diversity in the evolution of bacteria. Most lambdoid prophages in Escherichia coli are integrated into the chromosome with the same orientation with respect to the direction of chromosomal replication, and their location on the chromosome is far from homogeneous. To better understand these features, we studied the interplay between lysogenic and lytic states of phage lambda in both native and inverted integration orientations at the wild-type integration site as well as at other sites on the bacterial chromosome. Measurements of free phage released by spontaneous induction showed that the stability of lysogenic states is affected by location and orientation along the chromosome, with stronger effects near the origin of replication. Competition experiments and range expansions between lysogenic strains with opposite orientations and insertion loci indicated that there are no major differences in growth. Moreover, measurements of the level of transcriptional bursts of the cI gene coding for the lambda phage repressor using single-molecule fluorescence in situ hybridization resulted in similar levels of transcription for both orientations and prophage location. We postulate that the preference for a given orientation and location is a result of a balance between the maintenance of lysogeny and the ability to lyse.IMPORTANCEThe integration of genetic material of temperate bacterial viruses (phages) into the chromosomes of bacteria is a potent evolutionary force, allowing bacteria to acquire in one stroke new traits and restructure the information in their chromosomes. Puzzlingly, this genetic material is preferentially integrated in a particular orientation and at non-random sites on the bacterial chromosome. The work described here reveals that the interplay between the maintenance of the stability of the integrated phage, its ability to excise, and its localization along the chromosome plays a key role in setting chromosomal organization in Escherichia coli.

10.
J Phys Chem C Nanomater Interfaces ; 127(50): 24168-24182, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38148847

RESUMO

The reactive chemistry of molecular hydrogen at surfaces, notably dissociative sticking and hydrogen evolution, plays a crucial role in energy storage and fuel cells. Theoretical studies can help to decipher underlying mechanisms and reaction design, but studying dynamics at surfaces is computationally challenging due to the complex electronic structure at interfaces and the high sensitivity of dynamics to reaction barriers. In addition, ab initio molecular dynamics, based on density functional theory, is too computationally demanding to accurately predict reactive sticking or desorption probabilities, as it requires averaging over tens of thousands of initial conditions. High-dimensional machine learning-based interatomic potentials are starting to be more commonly used in gas-surface dynamics, yet robust approaches to generate reliable training data and assess how model uncertainty affects the prediction of dynamic observables are not well established. Here, we employ ensemble learning to adaptively generate training data while assessing model performance with full uncertainty quantification (UQ) for reaction probabilities of hydrogen scattering on different copper facets. We use this approach to investigate the performance of two message-passing neural networks, SchNet and PaiNN. Ensemble-based UQ and iterative refinement allow us to expose the shortcomings of the invariant pairwise-distance-based feature representation in the SchNet model for gas-surface dynamics.

11.
Phys Ther ; 102(4)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34963139

RESUMO

A clinical practice guideline on Parkinson disease was developed by an American Physical Therapy Association volunteer guideline development group that consisted of physical therapists and a neurologist. The guideline was based on systematic reviews of current scientific and clinical information and accepted approaches for management of Parkinson disease. The Spanish version of this clinical practice guideline is available as a supplement (Suppl. Appendix 1).


Assuntos
Doença de Parkinson , Fisioterapeutas , Pessoal Técnico de Saúde , Humanos , Doença de Parkinson/terapia , Modalidades de Fisioterapia , Estados Unidos
12.
J Biol Chem ; 285(4): 2721-33, 2010 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-19940147

RESUMO

Paenibacillus barcinonensis is a soil bacterium bearing a complex set of enzymes for xylan degradation, including several secreted enzymes and Xyn10B, one of the few intracellular xylanases reported to date. The crystal structure of Xyn10B has been determined by x-ray analysis. The enzyme folds into the typical (beta/alpha)(8) barrel of family 10 glycosyl hydrolases (GH10), with additional secondary structure elements within the beta/alpha motifs. One of these loops -L7- located at the beta7 C terminus, was essential for xylanase activity as its partial deletion yielded an inactive enzyme. The loop contains residues His(249)-Glu(250), which shape a pocket opened to solvent in close proximity to the +2 subsite, which has not been described in other GH10 enzymes. This wide cavity at the +2 subsite, where methyl-2,4-pentanediol from the crystallization medium was found, is a noteworthy feature of Xyn10B, as compared with the narrow crevice described for other GH10 xylanases. Docking analysis showed that this open cavity can accommodate glucuronic acid decorations of xylo-oligosaccharides. Co-crystallization experiments with conduramine derivative inhibitors supported the importance of this open cavity at the +2 subsite for Xyn10B activity. Several mutant derivatives of Xyn10B with improved thermal stability were obtained by forced evolution. Among them, mutant xylanases S15L and M93V showed increased half-life, whereas the double mutant S15L/M93V exhibited a further increase in stability, showing a 20-fold higher heat resistance than the wild type xylanase. All the mutations obtained were located on the surface of Xyn10B. Replacement of a Ser by a Leu residue in mutant xylanase S15L can increase hydrophobic packing efficiency and fill a superficial indentation of the protein, giving rise to a more compact structure of the enzyme.


Assuntos
Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/metabolismo , Evolução Molecular , Paenibacillus/enzimologia , Xilanos/metabolismo , Catálise , Domínio Catalítico , Cristalografia por Raios X , Endo-1,4-beta-Xilanases/genética , Mutagênese Sítio-Dirigida , Paenibacillus/genética , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Microbiologia do Solo , Especificidade por Substrato , Teprotida/farmacologia
13.
Nanoscale ; 13(25): 11058-11068, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34152348

RESUMO

Light-driven plasmonic enhancement of chemical reactions on metal catalysts is a promising strategy to achieve highly selective and efficient chemical transformations. The study of plasmonic catalyst materials has traditionally focused on late transition metals such as Au, Ag, and Cu. In recent years, there has been increasing interest in the plasmonic properties of a set of earth-abundant elements such as Mg, which exhibit interesting hydrogenation chemistry with potential applications in hydrogen storage. This work explores the optical, electronic, and catalytic properties of a set of metallic Mg nanoclusters with up to 2057 atoms using time-dependent density functional tight-binding and density functional theory calculations. Our results show that Mg nanoclusters are able to produce highly energetic hot electrons with energies of up to 4 eV. By electronic structure analysis, we find that these hot electrons energetically align with electronic states of physisorbed molecular hydrogen, occupation of which by hot electrons can promote the hydrogen dissociation reaction. We also find that the reverse reaction, hydrogen evolution on metallic Mg, can potentially be promoted by hot electrons, but following a different mechanism. Thus, from a theoretical perspective, Mg nanoclusters display very promising behaviour for their use in light promoted storage and release of hydrogen.

14.
Appl Environ Microbiol ; 76(18): 6290-4, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20656870

RESUMO

A new bacterial xylanase belonging to family 5 of glycosyl hydrolases was identified and characterized. The xylanase, Xyn5B from Bacillus sp. strain BP-7, was active on neutral, nonsubstituted xylooligosaccharides, showing a clear difference from other GH5 xylanases characterized to date that show a requirement for methyl-glucuronic acid side chains for catalysis. The enzyme was evaluated on Eucalyptus kraft pulp, showing its effectiveness as a bleaching aid.


Assuntos
Bacillus/enzimologia , Clareadores/metabolismo , Oligossacarídeos/metabolismo , Xilosidases/genética , Sequência de Aminoácidos , Sequência de Bases , Cromatografia em Gel , Cromatografia por Troca Iônica , Cromatografia Líquida , Cromatografia em Camada Fina , Clonagem Molecular , Eucalyptus/química , Concentração de Íons de Hidrogênio , Lignina/metabolismo , Dados de Sequência Molecular , Análise de Sequência de DNA , Temperatura , Xilosidases/metabolismo
15.
Nanoscale ; 11(17): 8604-8615, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-30994677

RESUMO

In the last thirty years, the study of plasmonic properties of noble metal nanostructures has become a very dynamic research area. The design and manipulation of matter in the nanometric scale demands a deep understanding of the underlying physico-chemical processes that operate in this size regimen. Here, a fully atomistic study of the spectroscopic and photodynamic properties of different icosahedral silver and gold nanoclusters has been carried out by using a Time-Dependent Density Functional Tight-Binding (TD-DFTB) model. The optical absorption spectra of different icosahedral silver and gold nanoclusters of diameters between 1 and 4 nanometers have been simulated. Furthermore, the energy absorption process has been quantified by means of calculating a fully quantum absorption cross-section using the information contained in the reduced single-electron density matrix. This approach allows us take into account the quantum confinement effects dominating in this size regime. Likewise, the plasmon-induced hot-carrier generation process under laser illumination has been explored from a fully dynamical perspective. We have found noticeable differences in the energy absorption mechanisms and the plasmon-induced hot-carrier generation process in both metals which can be explained by their respective electronic structures. These differences can be attributed to the existence of ultra-fast electronic dissipation channels in gold nanoclusters that are absent in silver nanoclusters. To the best of our knowledge, this is the first report that addresses this topic from a real time fully atomistic time-dependent approach.

16.
Carbohydr Polym ; 225: 115241, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31521275

RESUMO

The synthetic system to produce silver nanoparticles (AgNP) based on the thermally activated reduction of aqueous silver ions by chitosan (CS) polysaccharide is investigated to unravel the physicochemical processes controlling AgNP nucleation and growth. An anomalous preeminence of AgNP nucleation over growth is found for conditions under which the opposite trend is obeyed for AgNP synthesized from soluble precursors in homogeneous media. The behavior is modeled assuming the formation of a tridimensional supramolecular structure from silver ions / CS´s amino groups coordination complexes, driving the crosslinking within polymer folding and aggregation in shaping random coils. These structures become reactive precursor structures, that behave as microreactors during thermal treatment, and AgNP size are modulated by controlling the amino groups to silver ion ratio. Stabilized AgNP of high quality are easily produced from an environment-friendly synthetic system, which requires low cost reagents and demands simple and safe laboratory procedures.

17.
Nanoscale ; 9(44): 17471-17480, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29106431

RESUMO

The scouting of alternative plasmonic materials able to enhance and extend the optical properties of noble metal nanostructures is on the rise. Aluminum is endowed with a set of interesting properties which turn it into an attractive plasmonic material. Here we present the optical and electronic features of different aluminum nanostructures stemming from a multilevel computational study. Molecular Dynamics (MD) simulations using a reactive force field (ReaxFF), carefully validated with Density Functional Theory (DFT), were employed to mimic the oxidation of icosahedral aluminum nanoclusters. Resulting structures with different oxidation degrees were then studied through the Time-Dependent Density Functional Tight Binding (TD-DFTB) method. A similar approach was used in aluminum nanoclusters with a disordered structure to study how the loss of crystallinity affects the optical properties. To the best of our knowledge, this is the first report that addresses this issue from the fully atomistic time-dependent approach by means of two different and powerful simulation tools able to describe quantum and physicochemical properties associated with nanostructured particles.

19.
Nanoscale ; 9(34): 12391-12397, 2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-28829098

RESUMO

We present the first real-time atomistic simulation on the quantum dynamics of icosahedral silver nanoparticles under strong laser pulses, using time dependent density functional theory (TDDFT) molecular dynamics. We identify the emergence of sub-picosecond breathing-like radial oscillations starting immediately after laser pulse excitation, with increasing amplitude as the field intensity increases. The ultrafast dynamic response of nanoparticles to laser excitation points to a new mechanism other than equilibrium electron-phonon scattering previously assumed, which takes a much longer timescale. A sharp weakening of all bonds during laser excitation is observed, thanks to plasmon damping into excited electrons in anti-bonding states. This sudden weakening of bonds leads to a uniform expansion of the nanoparticles and launches coherent breathing oscillations.

20.
J Proteomics ; 131: 190-198, 2016 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-26546556

RESUMO

Phosphorylation is a reversible post-translational modification, playing a vital role in protein function. In T cells, protein phosphorylation is the key mechanism regulating T cell receptor-driven signaling pathways. In order to gain insights into the phosphoproteome evolution of T cell activation, we performed a large-scale quantitative phosphoproteomics study of Jurkat E6.1 (wild type) and Jurkat gamma1 (Phospholipase gamma1 null) cell clones upon costimulation with anti-CD3 and anti-CD28 antibodies at times ranging from 15min to as long as 120min. In total, we identified 5585 phosphopeptides belonging to 2008 phosphoproteins from both cell clones. We detected 130 and 114 novel phosphopeptides in Jurkat E6.1 and Jurkat gamma1 clones, respectively. A significantly lower number of proteins containing regulated phosphorylation sites were identified in Jurkat gamma1 in comparison to Jurkat E6.1, reflecting the vital role of Phospholipase gamma1 in T cell signaling. Several new phosphorylation sites from lymphocyte-specific protein tyrosine kinase (Lck) were identified. Of these, serine-121 showed significant changes in JE6.1 while only small changes in the Jgamma1 clone. Our data may contribute to the current human T cell phosphoproteome and provide a better understanding on T cell receptor signaling. Data are available via ProteomeXchange with identifier PXD002871.


Assuntos
Anticorpos Monoclonais/imunologia , Antígenos CD28/imunologia , Complexo CD3/imunologia , Fosfoproteínas/imunologia , Proteoma/imunologia , Clonagem de Organismos , Humanos , Imunização , Células Jurkat
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA