RESUMO
COVID-19 is a complex disease with short- and long-term respiratory, inflammatory and neurological symptoms that are triggered by the infection with SARS-CoV-2. Invasion of the brain by SARS-CoV-2 has been observed in humans and is postulated to be involved in post-COVID state. Brain infection is particularly pronounced in the K18-hACE2 mouse model of COVID-19. Prevention of brain infection in the acute phase of the disease might thus be of therapeutic relevance to prevent long-lasting symptoms of COVID-19. We previously showed that melatonin or two prescribed structural analogs, agomelatine and ramelteon delay the onset of severe clinical symptoms and improve survival of SARS-CoV-2-infected K18-hACE2 mice. Here, we show that treatment of K18-hACE2 mice with melatonin and two melatonin-derived marketed drugs, agomelatine and ramelteon, prevents SARS-CoV-2 entry in the brain, thereby reducing virus-induced damage of small cerebral vessels, immune cell infiltration and brain inflammation. Molecular modeling analyses complemented by experimental studies in cells showed that SARS-CoV-2 entry in endothelial cells is prevented by melatonin binding to an allosteric-binding site on human angiotensin-converting enzyme 2 (ACE2), thus interfering with ACE2 function as an entry receptor for SARS-CoV-2. Our findings open new perspectives for the repurposing of melatonergic drugs and its clinically used analogs in the prevention of brain infection by SARS-CoV-2 and COVID-19-related long-term neurological symptoms.
Assuntos
Tratamento Farmacológico da COVID-19 , Melatonina , Enzima de Conversão de Angiotensina 2 , Animais , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Melatonina/farmacologia , Melatonina/uso terapêutico , Camundongos , Camundongos Transgênicos , Peptidil Dipeptidase A , SARS-CoV-2RESUMO
BACKGROUND & AIMS: Autophagy-related gene 3 (ATG3) is an enzyme mainly known for its actions in the LC3 lipidation process, which is essential for autophagy. Whether ATG3 plays a role in lipid metabolism or contributes to non-alcoholic fatty liver disease (NAFLD) remains unknown. METHODS: By performing proteomic analysis on livers from mice with genetic manipulation of hepatic p63, a regulator of fatty acid metabolism, we identified ATG3 as a new target downstream of p63. ATG3 was evaluated in liver samples from patients with NAFLD. Further, genetic manipulation of ATG3 was performed in human hepatocyte cell lines, primary hepatocytes and in the livers of mice. RESULTS: ATG3 expression is induced in the liver of animal models and patients with NAFLD (both steatosis and non-alcoholic steatohepatitis) compared with those without liver disease. Moreover, genetic knockdown of ATG3 in mice and human hepatocytes ameliorates p63- and diet-induced steatosis, while its overexpression increases the lipid load in hepatocytes. The inhibition of hepatic ATG3 improves fatty acid metabolism by reducing c-Jun N-terminal protein kinase 1 (JNK1), which increases sirtuin 1 (SIRT1), carnitine palmitoyltransferase 1a (CPT1a), and mitochondrial function. Hepatic knockdown of SIRT1 and CPT1a blunts the effects of ATG3 on mitochondrial activity. Unexpectedly, these effects are independent of an autophagic action. CONCLUSIONS: Collectively, these findings indicate that ATG3 is a novel protein implicated in the development of steatosis. LAY SUMMARY: We show that autophagy-related gene 3 (ATG3) contributes to the progression of non-alcoholic fatty liver disease in humans and mice. Hepatic knockdown of ATG3 ameliorates the development of NAFLD by stimulating mitochondrial function. Thus, ATG3 is an important factor implicated in steatosis.
Assuntos
Proteínas Relacionadas à Autofagia/antagonistas & inibidores , Fígado Gorduroso/prevenção & controle , Mitocôndrias Hepáticas/metabolismo , Enzimas de Conjugação de Ubiquitina/antagonistas & inibidores , Animais , Proteínas Relacionadas à Autofagia/farmacologia , Modelos Animais de Doenças , Fígado Gorduroso/fisiopatologia , Metabolismo dos Lipídeos/genética , Camundongos , Mitocôndrias Hepáticas/fisiologia , Proteômica/métodos , Enzimas de Conjugação de Ubiquitina/farmacologiaRESUMO
Transmission of extracellular signals by G protein-coupled receptors typically relies on a cascade of intracellular events initiated by the activation of heterotrimeric G proteins or ß-arrestins followed by effector activation/inhibition. Here, we report an alternative signal transduction mode used by the orphan GPR50 that relies on the nuclear translocation of its carboxyl-terminal domain (CTD). Activation of the calcium-dependent calpain protease cleaves off the CTD from the transmembrane-bound GPR50 core domain between Phe-408 and Ser-409 as determined by MALDI-TOF-mass spectrometry. The cytosolic CTD then translocates into the nucleus assisted by its 'DPD' motif, where it interacts with the general transcription factor TFII-I to regulate c-fos gene transcription. RNA-Seq analysis indicates a broad role of the CTD in modulating gene transcription with ~ 8000 differentially expressed genes. Our study describes a non-canonical, direct signaling mode of GPCRs to the nucleus with similarities to other receptor families such as the NOTCH receptor.
Assuntos
Proteínas do Tecido Nervoso/genética , Transporte Proteico/genética , Receptores Acoplados a Proteínas G/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Humanos , Ligação Proteica/genética , Receptores Notch , Transdução de Sinais/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por MatrizRESUMO
Neuropilin-1 (Nrp1) guides the development of the nervous and vascular systems, but its role in the mature brain remains to be explored. Here we report that the expression of the 65 kDa isoform of Sema3A, the ligand of Nrp1, by adult vascular endothelial cells, is regulated during the ovarian cycle and promotes axonal sprouting in hypothalamic neurons secreting gonadotropin-releasing hormone (GnRH), the neuropeptide controlling reproduction. Both the inhibition of Sema3A/Nrp1 signaling and the conditional deletion of Nrp1 in GnRH neurons counteract Sema3A-induced axonal sprouting. Furthermore, the localized intracerebral infusion of Nrp1- or Sema3A-neutralizing antibodies in vivo disrupts the ovarian cycle. Finally, the selective neutralization of endothelial-cell Sema3A signaling in adult Sema3aloxP/loxP mice by the intravenous injection of the recombinant TAT-Cre protein alters the amplitude of the preovulatory luteinizing hormone surge, likely by perturbing GnRH release into the hypothalamo-hypophyseal portal system. Our results identify a previously unknown function for 65 kDa Sema3A-Nrp1 signaling in the induction of axonal growth, and raise the possibility that endothelial cells actively participate in synaptic plasticity in specific functional domains of the adult central nervous system, thus controlling key physiological functions such as reproduction.
Assuntos
Encéfalo/metabolismo , Células Endoteliais/metabolismo , Fertilidade/fisiologia , Neuropilina-1/fisiologia , Semaforina-3A/metabolismo , Animais , Axônios/metabolismo , Axônios/ultraestrutura , Ciclo Estral/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/fisiologia , Ligantes , Hormônio Luteinizante/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neuropilina-1/metabolismo , Ratos , Ratos Sprague-Dawley , Semaforina-3A/genética , Semaforina-3A/fisiologia , Transdução de SinaisRESUMO
Hypothalamic gonadotropin-releasing hormone (GnRH) neurons regulate fertility and integrate hormonal status with environmental cues to ensure reproductive success. Here we show that GnRH neurons in the olfactory bulb (GnRHOB) of adult mice can mediate social recognition. Specifically, we show that GnRHOB neurons extend neurites into the vomeronasal organ and olfactory epithelium and project to the median eminence. GnRHOB neurons in males express vomeronasal and olfactory receptors, are activated by female odors and mediate gonadotropin release in response to female urine. Male preference for female odors required the presence and activation of GnRHOB neurons, was impaired after genetic inhibition or ablation of these cells and relied on GnRH signaling in the posterodorsal medial amygdala. GnRH receptor expression in amygdala kisspeptin neurons appear to be required for GnRHOB neurons' actions on male mounting behavior. Taken together, these results establish GnRHOB neurons as regulating fertility, sex recognition and mating in male mice.
Assuntos
Hormônio Liberador de Gonadotropina , Neurônios , Odorantes , Bulbo Olfatório , Comportamento Sexual Animal , Órgão Vomeronasal , Animais , Masculino , Hormônio Liberador de Gonadotropina/metabolismo , Bulbo Olfatório/fisiologia , Bulbo Olfatório/metabolismo , Camundongos , Neurônios/metabolismo , Neurônios/fisiologia , Comportamento Sexual Animal/fisiologia , Feminino , Órgão Vomeronasal/fisiologia , Órgão Vomeronasal/metabolismo , Camundongos Endogâmicos C57BL , Olfato/fisiologia , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/fisiologiaRESUMO
Administration of recombinant glial cell line-derived neurotrophic factor into the putamen has been tested in preclinical and clinical studies to evaluate its neuroprotective effects on the progressive dopaminergic neuronal degeneration that characterizes Parkinson's disease. However, intracerebral glial cell line-derived neurotrophic factor infusion is a challenging therapeutic strategy, with numerous potential technical and medical limitations. Most of these limitations could be avoided if the production of endogenous glial cell line-derived neurotrophic factor could be increased. Glial cell line-derived neurotrophic factor is naturally produced in the striatum from where it exerts a trophic action on the nigrostriatal dopaminergic pathway. Most of striatal glial cell line-derived neurotrophic factor is synthesized by a subset of GABAergic interneurons characterized by the expression of parvalbumin. We sought to identify molecular targets specific to those neurons and which are putatively associated with glial cell line-derived neurotrophic factor synthesis. To this end, the transcriptomic differences between glial cell line-derived neurotrophic factor-positive parvalbumin neurons in the striatum and parvalbumin neurons located in the nearby cortex, which do not express glial cell line-derived neurotrophic factor, were analysed. Using mouse reporter models, we have defined the genomic signature of striatal parvalbumin interneurons obtained by fluorescence-activated cell sorting followed by microarray comparison. Short-listed genes were validated by additional histological and molecular analyses. These genes code for membrane receptors (Kit, Gpr83, Tacr1, Tacr3, Mc3r), cytosolic proteins (Pde3a, Crabp1, Rarres2, Moxd1) and a transcription factor (Lhx8). We also found the proto-oncogene cKit to be highly specific of parvalbumin interneurons in the non-human primate striatum, thus highlighting a conserved expression between species and suggesting that specific genes identified in mouse parvalbumin neurons could be putative targets in the human brain. Pharmacological stimulation of four G-protein-coupled receptors enriched in the striatal parvalbumin interneurons inhibited Gdnf expression presumably by decreasing cyclic adenosine monophosphate formation. Additional experiments with pharmacological modulators of adenylyl cyclase and protein kinase A indicated that this pathway is a relevant intracellular route to induce Gdnf gene activation. This preclinical study is an important step in the ongoing development of a specific pro-endo-glial cell line-derived neurotrophic factor pharmacological strategy to treat Parkinson's disease.
RESUMO
Melanin-concentrating hormone (MCH)-expressing neurons are key regulators of energy and glucose homeostasis. Here, we demonstrate that they provide dense projections to the median eminence (ME) in close proximity to tanycytes and fenestrated vessels. Chemogenetic activation of MCH neurons as well as optogenetic stimulation of their projections in the ME enhance permeability of the ME by increasing fenestrated vascular loops and enhance leptin action in the arcuate nucleus of the hypothalamus (ARC). Unbiased phosphoRiboTrap-based assessment of cell activation upon chemogenetic MCH neuron activation reveals MCH-neuron-dependent regulation of endothelial cells. MCH neurons express the vascular endothelial growth factor A (VEGFA), and blocking VEGF-R signaling attenuates the leptin-sensitizing effect of MCH neuron activation. Our experiments reveal that MCH neurons directly regulate permeability of the ME barrier, linking the activity of energy state and sleep regulatory neurons to the regulation of hormone accessibility to the ARC.
Assuntos
Permeabilidade da Membrana Celular/fisiologia , Hormônios Hipotalâmicos/fisiologia , Eminência Mediana/fisiologia , Melaninas/fisiologia , Neurônios/fisiologia , Hormônios Hipofisários/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/fisiologia , Vasos Sanguíneos/fisiologia , Capilares/fisiologia , Núcleo Celular/fisiologia , Núcleo Celular/ultraestrutura , Células Endoteliais/fisiologia , Leptina/fisiologia , Eminência Mediana/irrigação sanguínea , Camundongos , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/biossínteseRESUMO
OBJECTIVES: Infections, cancer, and systemic inflammation elicit anorexia. Despite the medical significance of this phenomenon, the question of how peripheral inflammatory mediators affect the central regulation of food intake is incompletely understood. Therefore, we have investigated the sickness behavior induced by the prototypical inflammatory mediator IL-1ß. METHODS: IL-1ß was injected intravenously. To interfere with IL-1ß signaling, we deleted the essential modulator of NF-κB signaling (Nemo) in astrocytes and tanycytes. RESULTS: Systemic IL-1ß increased the activity of the transcription factor NF-κB in tanycytes of the mediobasal hypothalamus (MBH). By activating NF-κB signaling, IL-1ß induced the expression of cyclooxygenase-2 (Cox-2) and stimulated the release of the anorexigenic prostaglandin E2 (PGE2) from tanycytes. When we deleted Nemo in astrocytes and tanycytes, the IL-1ß-induced anorexia was alleviated whereas the fever response and lethargy response were unchanged. Similar results were obtained after the selective deletion of Nemo exclusively in tanycytes. CONCLUSIONS: Tanycytes form the brain barrier that mediates the anorexic effect of systemic inflammation in the hypothalamus.
Assuntos
Anorexia/etiologia , Células Ependimogliais/metabolismo , Inflamação/complicações , Inflamação/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Animais , Biomarcadores , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Técnicas de Silenciamento de Genes , Imuno-Histoquímica , Hibridização In Situ , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , RatosRESUMO
Transforming growth factor-ß (TGFß) signaling is initiated by the type I, II TGFß receptor (TßRI/TßRII) complex. Here we report the formation of an alternative complex between TßRI and the orphan GPR50, belonging to the G protein-coupled receptor super-family. The interaction of GPR50 with TßRI induces spontaneous TßRI-dependent Smad and non-Smad signaling by stabilizing the active TßRI conformation and competing for the binding of the negative regulator FKBP12 to TßRI. GPR50 overexpression in MDA-MB-231 cells mimics the anti-proliferative effect of TßRI and decreases tumor growth in a xenograft mouse model. Inversely, targeted deletion of GPR50 in the MMTV/Neu spontaneous mammary cancer model shows decreased survival after tumor onset and increased tumor growth. Low GPR50 expression is associated with poor survival prognosis in human breast cancer irrespective of the breast cancer subtype. This describes a previously unappreciated spontaneous TGFß-independent activation mode of TßRI and identifies GPR50 as a TßRI co-receptor with potential impact on cancer development.
Assuntos
Neoplasias Mamárias Animais/prevenção & controle , Proteínas do Tecido Nervoso/fisiologia , Receptor do Fator de Crescimento Transformador beta Tipo I/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Endossomos/metabolismo , Feminino , Perfilação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Neoplasias Mamárias Animais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Proteínas do Tecido Nervoso/genética , Análise de Sequência com Séries de Oligonucleotídeos , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Proteínas Smad/metabolismo , Proteína 1A de Ligação a Tacrolimo/metabolismoRESUMO
A sparse population of a few hundred primarily hypothalamic neurons forms the hub of a complex neuroglial network that controls reproduction in mammals by secreting the 'master molecule' gonadotropin-releasing hormone (GnRH). Timely postnatal changes in GnRH expression are essential for puberty and adult fertility. Here we report that a multilayered microRNA-operated switch with built-in feedback governs increased GnRH expression during the infantile-to-juvenile transition and that impairing microRNA synthesis in GnRH neurons leads to hypogonadotropic hypogonadism and infertility in mice. Two essential components of this switch, miR-200 and miR-155, respectively regulate Zeb1, a repressor of Gnrh transcriptional activators and Gnrh itself, and Cebpb, a nitric oxide-mediated repressor of Gnrh that acts both directly and through Zeb1, in GnRH neurons. This alteration in the delicate balance between inductive and repressive signals induces the normal GnRH-fuelled run-up to correct puberty initiation, and interfering with this process disrupts the neuroendocrine control of reproduction.
Assuntos
Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , MicroRNAs/metabolismo , Reprodução/fisiologia , Maturidade Sexual/fisiologia , Envelhecimento , Animais , Fertilidade/fisiologia , Hipogonadismo/metabolismo , Hipotálamo/metabolismo , Camundongos Endogâmicos C57BL , Camundongos TransgênicosRESUMO
Reproductive competence in mammals depends on the projection of gonadotropin-releasing hormone (GnRH) neurons to the hypothalamic median eminence (ME) and the timely release of GnRH into the hypothalamic-pituitary-gonadal axis. In adult rodents, GnRH neurons and the specialized glial cells named tanycytes periodically undergo cytoskeletal plasticity. However, the mechanisms that regulate this plasticity are still largely unknown. We demonstrate that Semaphorin7A, expressed by tanycytes, plays a dual role, inducing the retraction of GnRH terminals and promoting their ensheathment by tanycytic end feet via the receptors PlexinC1 and Itgb1, respectively. Moreover, Semaphorin7A expression is regulated during the oestrous cycle by the fluctuating levels of gonadal steroids. Genetic invalidation of Semaphorin7A receptors in mice induces neuronal and glial rearrangements in the ME and abolishes normal oestrous cyclicity and fertility. These results show a role for Semaphorin7A signalling in mediating periodic neuroglial remodelling in the adult ME during the ovarian cycle.