Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38203740

RESUMO

Adolescent Idiopathic Scoliosis (AIS) is the most common form of three-dimensional spinal disorder in adolescents between the ages of 10 and 18 years of age, most commonly diagnosed in young women when severe disease occurs. Patients with AIS are characterized by abnormal skeletal growth and reduced bone mineral density. The etiology of AIS is thought to be multifactorial, involving both environmental and genetic factors, but to date, it is still unknown. Therefore, it is crucial to further investigate the molecular pathogenesis of AIS and to identify biomarkers useful for predicting curve progression. In this perspective, the relative abundance of a panel of microRNAs (miRNAs) was analyzed in the plasma of 20 AIS patients and 10 healthy controls (HC). The data revealed a significant group of circulating miRNAs dysregulated in AIS patients compared to HC. Further bioinformatic analyses evidenced a more restricted expression of some miRNAs exclusively in severe AIS females. These include some members of the miR-30 family, which are considered promising regulators for treating bone diseases. We demonstrated circulating extracellular vesicles (EVs) from severe AIS females contained miR-30 family members and decreased the osteogenic differentiation of mesenchymal stem cells. Proteomic analysis of EVs highlighted the expression of proteins associated with orthopedic disease. This study provides preliminary evidence of a miRNAs signature potentially associated with severe female AIS and suggests the corresponding vesicular component may affect cellular mechanisms crucial in AIS, opening the scenario for in-depth studies on prognostic differences related to gender and grade.


Assuntos
MicroRNA Circulante , MicroRNAs , Escoliose , Adolescente , Criança , Feminino , Humanos , MicroRNA Circulante/genética , MicroRNAs/genética , Osteogênese/genética , Proteômica , Escoliose/genética
2.
Curr Issues Mol Biol ; 45(2): 1471-1482, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36826040

RESUMO

SARS-CoV-2, which causes COVID-19, has altered human activities all over the world and has become a global hazard to public health. Despite considerable advancements in pandemic containment techniques, in which vaccination played a key role, COVID-19 remains a global threat, particularly for frail patients and unvaccinated individuals, who may be more susceptible to developing ARDS. Several studies reported that patients with COVID-19-related ARDS who were treated with ECMO had a similar survival rate to those with COVID-19-unrelated ARDS. In order to shed light on the potential mechanisms underlying the COVID-19 infection, we conducted this proof-of-concept study using single-cell V(D)J and gene expression sequencing of B cells to examine the dynamic changes in the transcriptomic BCR repertoire present in patients with COVID-19 at various stages. We compared a recovered and a deceased COVID-19 patient supported by ECMO with one COVID-19-recovered patient who did not receive ECMO treatment and one healthy subject who had never been infected previously. Our analysis revealed a downregulation of FXYD, HLA-DRB1, and RPS20 in memory B cells; MTATP8 and HLA-DQA1 in naïve cells; RPS4Y1 in activated B cells; and IGHV3-73 in plasma cells in COVID-19 patients. We further described an increased ratio of IgA + IgG to IgD + IgM, suggestive of an intensive memory antibody response, in the COVID ECMO D patient. Finally, we assessed a V(D)J rearrangement of heavy chain IgHV3, IGHJ4, and IGHD3/IGHD2 families in COVID-19 patients regardless of the severity of the disease.

3.
Cancer Cell Int ; 23(1): 77, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072829

RESUMO

BACKGROUND: Metastatic disease is the major cause of cancer-related deaths. Increasing evidence shows that primary tumor cells can promote metastasis by preparing the local microenvironment of distant organs, inducing the formation of the so-called "pre-metastatic niche". In recent years, several studies have highlighted that among the tumor-derived molecular components active in pre-metastatic niche formation, small extracellular vesicles (sEVs) play a crucial role. Regarding liver metastasis, the ability of tumor-derived sEVs to affect the activities of non-parenchymal cells such as Kupffer cells and hepatic stellate cells is well described, while the effects on hepatocytes, the most conspicuous and functionally relevant hepatic cellular component, remain unknown. METHODS: sEVs isolated from SW480 and SW620 CRC cells and from clinical samples of CRC patients and healthy subjects were used to treat human healthy hepatocytes (THLE-2 cells). RT-qPCR, Western blot and confocal microscopy were applied to investigate the effects of this treatment. RESULTS: Our study shows for the first time that TGFß1-carrying CRC_sEVs impair the morphological and functional properties of healthy human hepatocytes by triggering their TGFß1/SMAD-dependent EMT. These abilities of CRC_sEVs were further confirmed by evaluating the effects elicited on hepatocytes by sEVs isolated from plasma and biopsies from CRC patients. CONCLUSIONS: Since it is known that EMT of hepatocytes leads to the formation of a fibrotic environment, a well-known driver of metastasis, these results suggest that CRC_sEV-educated hepatocytes could have an active and until now neglected role during liver metastasis formation.

4.
Clin Chem Lab Med ; 61(1): 173-179, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36114825

RESUMO

OBJECTIVES: Since December 2019, the worldwide public health has been threatened by a severe acute respiratory syndrome caused by Coronavirus-2. From the beginning, a turning point has been the identification of new cases of infection, in order to minimize the virus spreading among the population. For this reason, it was necessary introducing a panel of tests able to identify positive cases, which became crucial for all countries. METHODS: As a Regional Reference Centre, the CRQ Laboratory (Regional Laboratory for the Quality Control) developed and conducted an External Quality Assessment (EQA) panel of assay, so as to evaluate the quality of real-time reverse transcription polymerase chain reaction (PCR), which were used by 62 Sicilian laboratories, previously authorized to issue certificates for the COVID-19 diagnosis, on behalf of the Public Health Service. RESULTS: The qualitative performance test was based on pooled samples with different viral loads of SARS-CoV-2 or human Coronavirus OC43. 75% of the participating laboratories tested all core samples correctly, while the remaining 25% interpreted incorrectly the EQA exercise samples matching negatively the standards required. CONCLUSIONS: Subsequent inspection visits confirmed the issue of incorrect positive and negative certifications for COVID-19 by private and public laboratories, despite the possession of the authorization requirements currently provided for by current regulations, with a significant impact on the SSR.


Assuntos
COVID-19 , Serviços de Laboratório Clínico , Humanos , COVID-19/diagnóstico , Teste para COVID-19 , Laboratórios , Laboratórios Clínicos , SARS-CoV-2
5.
Int J Mol Sci ; 24(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37686355

RESUMO

Neural stem cells (NSCs) were described for the first time more than two decades ago for their ability to differentiate into all neural cell lineages. The isolation of NSCs from adults and embryos was carried out by various laboratories and in different species, from mice to humans. Similarly, no more than two decades ago, cancer stem cells were described. Cancer stem cells, previously identified in hematological malignancies, have now been isolated from several solid tumors (breast, brain, and gastrointestinal compartment). Though the origin of these cells is still unknown, there is a wide consensus about their role in tumor onset, propagation and, in particular, resistance to treatments. Normal and neoplastic neural stem cells share common characteristics, and can thus be considered as two sides of the same coin. This is particularly true in the case of the Zika virus (ZIKV), which has been described as an inhibitor of neural development by specifically targeting NSCs. This understanding prompted us and other groups to evaluate ZIKV action in glioblastoma stem cells (GSCs). The results indicate an oncolytic activity of this virus vs. GSCs, opening potentially new possibilities in glioblastoma treatment.


Assuntos
Glioblastoma , Infecção por Zika virus , Zika virus , Adulto , Humanos , Animais , Camundongos , Glioblastoma/terapia , Células-Tronco Neoplásicas , Encéfalo
6.
Int J Mol Sci ; 25(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38203716

RESUMO

In the last years, the field of nanomedicine and drug delivery has grown exponentially, providing new platforms to carry therapeutic agents into the target sites. Extracellular vesicles (EVs) are ready-to-use, biocompatible, and non-toxic nanoparticles that are revolutionizing the field of drug delivery. EVs are involved in cell-cell communication and mediate many physiological and pathological processes by transferring their bioactive cargo to target cells. Recently, nanovesicles from plants (PDNVs) are raising the interest of the scientific community due to their high yield and biocompatibility. This study aims to evaluate whether PDNVs may be used as drug delivery systems. We isolated and characterized nanovesicles from tangerine juice (TNVs) that were comparable to mammalian EVs in size and morphology. TNVs carry the traditional EV marker HSP70 and, as demonstrated by metabolomic analysis, contain flavonoids, organic acids, and limonoids. TNVs were loaded with DDHD1-siRNA through electroporation, obtaining a loading efficiency of 13%. We found that the DDHD1-siRNA complex TNVs were able to deliver DDHD1-siRNA to human colorectal cancer cells, inhibiting the target expression by about 60%. This study represents a proof of concept for the use of PDNVs as vehicles of RNA interference (RNAi) toward mammalian cells.


Assuntos
Citrus , Neoplasias Colorretais , Humanos , Animais , RNA Interferente Pequeno/genética , Estudo de Prova de Conceito , Linhagem Celular , Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia , Mamíferos
7.
Int J Mol Sci ; 23(2)2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35054891

RESUMO

Osteosarcoma (OS) is the most common primary bone tumor mainly occurring in young adults and derived from primitive bone-forming mesenchyme. OS develops in an intricate tumor microenvironment (TME) where cellular function regulated by microRNAs (miRNAs) may affect communication between OS cells and the surrounding TME. Therefore, miRNAs are considered potential therapeutic targets in cancer and one of the goals of research is to accurately define a specific signature of a miRNAs, which could reflect the phenotype of a particular tumor, such as OS. Through NGS approach, we previously found a specific molecular profile of miRNAs in OS and discovered 8 novel miRNAs. Among these, we deepen our knowledge on the fifth candidate renamed now miR-CT3. MiR-CT3 expression was low in OS cells when compared with human primary osteoblasts and healthy bone. Through TargetScan, VEGF-A was predicted as a potential biological target of miR-CT3 and luciferase assay confirmed it. We showed that enforced expression of miR-CT3 in two OS cell lines, SAOS-2 and MG-63, reduced expression of VEGF-A mRNA and protein, inhibiting tumor angiogenesis. Enforced expression of miR-CT3 also reduced OS cell migration and invasion as confirmed by soft agar colony formation assay. Interestingly, we found that miR-CT3 behaves inducing the activation of p38 MAP kinase pathway and modulating the epithelial-mesenchymal transition (EMT) proteins, in particular reducing Vimentin expression. Overall, our study highlights the novel role of miR-CT3 in regulating tumor angiogenesis and progression in OS cells, linking also to the modulation of EMT proteins.


Assuntos
Neoplasias Ósseas , Transição Epitelial-Mesenquimal , Sistema de Sinalização das MAP Quinases , MicroRNAs , Neovascularização Patológica , Osteossarcoma , Humanos , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Linhagem Celular , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , MicroRNAs/genética , MicroRNAs/fisiologia , Invasividade Neoplásica , Neovascularização Patológica/genética , Osteoblastos/metabolismo , Osteoblastos/fisiologia , Osteossarcoma/genética , Osteossarcoma/secundário
8.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36499373

RESUMO

At present, there is a lack of clinical evidence about the impact and long-term durability of the immune response induced by the third dose of mRNA vaccines. In this study, we followed up the B cell compartment behavior in a cohort of immunocompetent individuals three and six months after the third dose of vaccine. During this period, some subjects contracted the virus. In uninfected vaccinated subjects, we did not report any changes in serum spike-specific IgG levels, with a significant reduction in IgA. Instead, subjects recovered from natural infection showed a significant increase in both specific IgG and IgA. Moreover, we showed a time-related decrease in IgG neutralizing potential to all SARS-CoV-2 variants of concern (VOC) in uninfected compared to recovered subjects, who displayed an increased neutralizing ability, particularly against the omicron variant. Finally, we underlined the presence of a pool of SARS-CoV-2-specific B cells in both groups that are prone to respond to restimulation, as demonstrated by their ability to differentiate into plasma cells and to produce anti-SARS-CoV-2-specific immunoglobulins. These data lead us to assert the long-term effectiveness of the BNT162b2 vaccine in contrasting the severe form of the pathology and prevent COVID-19-associated hospitalization.


Assuntos
COVID-19 , Células B de Memória , Humanos , SARS-CoV-2 , Vacina BNT162 , COVID-19/prevenção & controle , RNA Mensageiro/genética , Imunoglobulina G , Anticorpos Antivirais
9.
Int J Mol Sci ; 23(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35055049

RESUMO

Mesenchymal stromal/stem cells (MSCs) are believed to function in vivo as a homeostatic tool that shows therapeutic properties for tissue repair/regeneration. Conventionally, these cells are expanded in two-dimensional (2D) cultures, and, in that case, MSCs undergo genotypic/phenotypic changes resulting in a loss of their therapeutic capabilities. Moreover, several clinical trials using MSCs have shown controversial results with moderate/insufficient therapeutic responses. Different priming methods were tested to improve MSC effects, and three-dimensional (3D) culturing techniques were also examined. MSC spheroids display increased therapeutic properties, and, in this context, it is crucial to understand molecular changes underlying spheroid generation. To address these limitations, we performed RNA-seq on human amnion-derived MSCs (hAMSCs) cultured in both 2D and 3D conditions and examined the transcriptome changes associated with hAMSC spheroid formation. We found a large number of 3D culture-sensitive genes and identified selected genes related to 3D hAMSC therapeutic effects. In particular, we observed that these genes can regulate proliferation/differentiation, as well as immunomodulatory and angiogenic processes. We validated RNA-seq results by qRT-PCR and methylome analysis and investigation of secreted factors. Overall, our results showed that hAMSC spheroid culture represents a promising approach to cell-based therapy that could significantly impact hAMSC application in the field of regenerative medicine.


Assuntos
Âmnio/citologia , Células-Tronco Mesenquimais/metabolismo , Transcriptoma , Biomarcadores , Técnicas de Cultura de Células , Diferenciação Celular , Separação Celular , Células Cultivadas , Biologia Computacional/métodos , Epigênese Genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Humanos , Imunofenotipagem , Células-Tronco Mesenquimais/citologia , Anotação de Sequência Molecular , Medicina Regenerativa
10.
Int J Mol Sci ; 22(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466583

RESUMO

Mesenchymal stromal/stem cells (MSCs) are multipotent adult stem cells that support homeostasis during tissue regeneration. In the last decade, cell therapies based on the use of MSCs have emerged as a promising strategy in the field of regenerative medicine. Although these cells possess robust therapeutic properties that can be applied in the treatment of different diseases, variables in preclinical and clinical trials lead to inconsistent outcomes. MSC therapeutic effects result from the secretion of bioactive molecules affected by either local microenvironment or MSC culture conditions. Hence, MSC paracrine action is currently being explored in several clinical settings either using a conditioned medium (CM) or MSC-derived exosomes (EXOs), where these products modulate tissue responses in different types of injuries. In this scenario, MSC paracrine mechanisms provide a promising framework for enhancing MSC therapeutic benefits, where the composition of secretome can be modulated by priming of the MSCs. In this review, we examine the literature on the priming of MSCs as a tool to enhance their therapeutic properties applicable to the main processes involved in tissue regeneration, including the reduction of fibrosis, the immunomodulation, the stimulation of angiogenesis, and the stimulation of resident progenitor cells, thereby providing new insights for the therapeutic use of MSCs-derived products.


Assuntos
Células-Tronco Mesenquimais/citologia , Medicina Regenerativa/métodos , Animais , Meios de Cultivo Condicionados/metabolismo , Exossomos/metabolismo , Humanos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Neovascularização Fisiológica , Comunicação Parácrina
11.
Carcinogenesis ; 41(5): 666-677, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31294446

RESUMO

Bone microenvironment provides growth and survival signals essential for osteosarcoma (OS) initiation and progression. OS cells regulate communications inside tumor microenvironment through different ways and, among all, tumor-derived exosomes support cancer progression and metastasis. To define the contribution of OS-derived exosomes inside the microenvironment, we investigated the effects induced in bone remodeling mechanism and tumor angiogenesis. We demonstrated that exosomes promoted osteoclasts differentiation and bone resorption activity. Furthermore, exosomes potentiated tube formation of endothelial cells and increased angiogenic markers expression. We therefore investigated the micro RNA (miRNA) cargo from exosomes and their parental cells by performing small RNA sequencing through NGS Illumina platform. Hierarchical clustering highlighted a unique molecular profile of exosomal miRNA; bioinformatic analysis by DIANA-mirPath revealed that miRNAs identified take part in various biological processes and carcinogenesis. Among these miRNAs, some were already known for their involvement in the tumor microenvironment establishment, as miR-148a and miR-21-5p. Enforced expression of miR-148a and miR-21-5p in Raw264.7 and hTert immortalized umbilical vein endothelial cells recapitulated the effects induced by exosomes. Overall, our study highlighted the importance of OS exosomes in tumor microenvironment also by a specific packaging of miRNAs.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Ósseas/patologia , Endotélio Vascular/patologia , Exossomos/patologia , MicroRNAs/genética , Neovascularização Patológica/patologia , Osteossarcoma/patologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Endotélio Vascular/metabolismo , Exossomos/genética , Exossomos/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Osteossarcoma/genética , Osteossarcoma/metabolismo , Microambiente Tumoral
12.
Transpl Infect Dis ; 22(5): e13345, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32495971

RESUMO

The hepatitis C virus mainly infects the liver but is also able to infect and replicate in other body compartments by creating an extra-hepatic reservoir that may influence the persistence of the infection after transplantation. It is unknown whether antiviral drugs affect the viral extra-hepatic sites. We evaluated the ability of pegylated/interferon + ribavirin and sofosbuvir + ribavirin to clear the virus from the gastrointestinal mucosa of liver-transplanted patients with HCV recurrence after transplantation. A total of 51 liver-transplanted patients, 30 treated with pegylated/interferon + ribavirin (ERA1) and 21 treated with sofosbuvir + ribavirin (ERA2), were enrolled, and blood serum and gastrointestinal tissues analyzed for the presence of HCV-RNA. In the ERA1 group, the 46.6% of patients had a sustained viral response to antiviral treatment, and gastrointestinal biopsies were positive for HCV in 73.3% of cases, 54.5% of responders, and 45.5% of non-responders. In the ERA2 group, the 66.6% had a sustained viral response, and gastrointestinal HCV-RNA was present in the 14.3% of patients, all relapsers. Sofosbuvir + ribavirin cleared the intestinal HCV in 85.7% of patients with recurrent HCV infection, while pegylated/interferon + ribavirin cleared it in 26.6% of treated patients, demonstrating the better effectiveness of new direct antiviral agents in clearing HCV intestinal reservoir.


Assuntos
Hepatite C , Transplante de Fígado , Adulto , Idoso , Antivirais/uso terapêutico , Quimioterapia Combinada , Feminino , Hepacivirus/genética , Hepatite C/tratamento farmacológico , Humanos , Masculino , Pessoa de Meia-Idade , RNA Viral , Recidiva , Ribavirina/uso terapêutico , Sofosbuvir/uso terapêutico
13.
Cell Immunol ; 343: 103770, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-29523417

RESUMO

Patients following solid organ transplantation show a higher risk of developing cancer compared to the general population. Elevated risk is likely due to the interplay of a combination of factors, such as chronic inflammation, coexisting medical conditions, immunosuppressive regimen and persistent infection with oncogenic viruses. In addition, the tumor microenvironment plays a pivotal role in cancer progression, by driving recruitment and in situ differentiation of anti-inflammatory cells of the adaptive and innate immune system such as regulatory T cells, Th17, Dendritic Cells, Myeloid Derived Suppressor Cells, Type 2 Macrophages. Here we discuss the molecular role and the contribution to oncogenesis of Epstein-Barr virus (EBV), Kaposi's sarcoma-associated herpesvirus (KSHV/HHV8) and Hepatitis C virus (HCV) in immunocompromised patients and describe how these viruses may contribute to oncogenesis both directly and indirectly.


Assuntos
Neoplasias/virologia , Vírus Oncogênicos , Animais , Hepacivirus , Herpesvirus Humano 4 , Herpesvirus Humano 8 , Humanos , Hospedeiro Imunocomprometido
14.
Expert Rev Proteomics ; 14(6): 491-498, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28532233

RESUMO

INTRODUCTION: Primary Sjögren's syndrome (pSS) is a complex heterogeneous autoimmune disorder, typically affecting exocrine glands. Recently, a great interest has arisen in searching for novel biomarkers able to improve the diagnostic work-up of the disease as well as the general assessment and the prognostic stratification of pSS patients. From this perspective, salivary proteomics has appeared as a promising tool considering that salivary proteins may closely reflect the underlying disease processes in the salivary glands. Areas covered: Here we will provide an update on the state of the art of proteomics in pSS, focusing in particular on putative novel biomarkers for the disease. There is a special focus on candidate salivary protein and their role in non-invasive diagnosis of pSS. Expert commentary: Proteomics represents an emerging throughput omics-based approach for use in diagnosis of pSS. The studies that have been presented in this review have provided major contributions towards the identification of putative protein biomarkers, that once validated, could be able not only to contribute to a non-invasive diagnosis of pSS but also to the stratification of different disease subsets, ultimately allowing a better comprehension of the disease.


Assuntos
Proteômica , Glândulas Salivares/metabolismo , Proteínas e Peptídeos Salivares/genética , Síndrome de Sjogren/genética , Humanos , Prognóstico , Glândulas Salivares/patologia , Síndrome de Sjogren/diagnóstico , Síndrome de Sjogren/patologia
15.
Rheumatology (Oxford) ; 56(6): 1031-1038, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28339625

RESUMO

Objectives: Salivary cystatin S is a defence protein mainly produced by submandibular glands and involved in innate oral immunity. This study aimed to verify whether cystatin S was diversely expressed in different disease subsets of primary Sjogren's syndrome (pSS) patients, defined on the basis of salivary flow [unstimulated salivary flow rate (USFR)], minor salivary gland (MSG) focus score and submandibular gland ultrasonography abnormalities. We also evaluated miR-126 and miR-335-5p expression in MSG biopsies to verify whether an aberrant regulation of cystatin S at the glandular level may influence its salivary expression. Methods: Forty pSS patients and 20 sex- and age-matched healthy volunteers were included. Salivary cystatin S levels were assessed by western blot analysis using a stain-free technology. The expression of miR-126, miR-335-5p and cystatin S was assessed by quantitative PCR in 15 MSG biopsies differing for USFR and MSG focus score. Results: We found that salivary cystatin S was significantly decreased in pSS patients vs healthy volunteers ( P = 0.000), especially in those with hyposalivation. A positive correlation was observed between cystatin S and USFR ( r = 0.75, P = 0.01). Salivary cystatin S was also significantly reduced in patients with a submandibular gland ultrasonography score ⩾2. The expression levels of miR-126 and miR-335-5P increased in inverse proportion with USFR. The mRNA of cystatin S did not change significantly, suggesting post-transcriptional regulation. Conclusion: Cystatin S emerged as a promising biomarker for pSS, strongly correlated with glandular dysfunction. An upregulation of miR-126 and miR-335-5P might be implicated in its expression.


Assuntos
Cistatinas Salivares/metabolismo , Síndrome de Sjogren/complicações , Doenças da Glândula Submandibular/etiologia , Biomarcadores/metabolismo , Estudos de Casos e Controles , Feminino , Humanos , MicroRNAs/metabolismo , MicroRNAs/fisiologia , Pessoa de Meia-Idade , Saliva/metabolismo , Síndrome de Sjogren/metabolismo , Glândula Submandibular/metabolismo , Doenças da Glândula Submandibular/metabolismo
16.
ESC Heart Fail ; 11(1): 155-166, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37864482

RESUMO

AIMS: MicroRNAs play a role in pathogenic mechanisms leading to heart failure. We measured a panel of 754 miRNAs in the myocardial tissue and in the serum of patients with heart failure with reduced ejection fraction due to dilatative idiopathic cardiomyopathy (DCM, N = 10) or ischaemic cardiomyopathy (N = 3), referred to left ventricular assist device implant. We aim to identify circulating miRNAs with high tissue co-expression, significantly associated to echocardiographic and haemodynamic measures. METHODS AND RESULTS: We have measured a panel of 754 miRNAs in the myocardial tissue [left ventricular (LV) apex] and in the serum obtained at the same time in a well selected study population of end-stage heart failure with reduced ejection fraction due to either DCM or ischaemic cardiomyopathy, referred to continuous flow left ventricular assist device implant. We observed moderate agreement for miR-30d, miR-126-3p, and miR-483-3p. MiR-30d was correlated to LV systolic as well as diastolic volumes (r = 0.78, P = 0.001 and r = 0.80, P = 0.005, respectively), while miR-126-3p was associated to mPAP and PCWP (r = -0.79, P = 0.007 and r = -0.80, P = 0.005, respectively). Finally, serum miR-483-3p had an association with right ventricular end diastolic diameter (r = -0.73, P = 0.02) and central venous pressure (CVP) (r - 0.68 p 0.03). CONCLUSIONS: In patients with DCM, few miRNAs are co-expressed in serum and tissue: They are related to LV remodelling (miR-30d), post-capillary pulmonary artery pressure (miR-126-3p), and right ventricular remodelling/filling pressures (miR-483-3p). Further studies are needed to confirm their role in diagnosis, prognosis or as therapeutic targets in heart failure with reduced ejection fraction.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Hipertensão Pulmonar , MicroRNAs , Isquemia Miocárdica , Disfunção Ventricular Esquerda , Humanos , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/genética , MicroRNAs/genética , Remodelação Ventricular
17.
Front Cell Dev Biol ; 12: 1385712, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38882056

RESUMO

Mesenchymal stromal/stem cells (MSCs) are a heterogeneous population of multipotent cells that can be obtained from various tissues, such as dental pulp, adipose tissue, bone marrow and placenta. MSCs have gained importance in the field of regenerative medicine because of their promising role in cell therapy and their regulatory abilities in tissue repair and regeneration. However, a better characterization of these cells and their products is necessary to further potentiate their clinical application. In this study, we used unbiased high-resolution mass spectrometry-based proteomic analysis to investigate the impact of distinct priming strategies, such as hypoxia and IFN-γ treatment, on the composition and therapeutic functionality of the secretome produced by MSCs derived from the amniotic membrane of the human placenta (hAMSCs). Our investigation revealed that both types of priming improved the therapeutic efficacy of hAMSCs, and these improvements were related to the secretion of functional factors present in the conditioned medium (CM) and exosomes (EXOs), which play crucial roles in mediating the paracrine effects of MSCs. In particular, hypoxia was able to induce a pro-angiogenic, innate immune response-activating, and tissue-regenerative hAMSC phenotype, as highlighted by the elevated production of regulatory factors such as VEGFA, PDGFRB, ANGPTL4, ENG, GRO-γ, IL8, and GRO-α. IFN-γ priming, instead, led to an immunosuppressive profile in hAMSCs, as indicated by increased levels of TGFB1, ANXA1, THBS1, HOMER2, GRN, TOLLIP and MCP-1. Functional assays validated the increased angiogenic properties of hypoxic hAMSCs and the enhanced immunosuppressive activity of IFN-γ-treated hAMSCs. This study extends beyond the direct priming effects on hAMSCs, demonstrating that hypoxia and IFN-γ can influence the functional characteristics of hAMSC-derived secretomes, which, in turn, orchestrate the production of functional factors by peripheral blood cells. This research provides valuable insights into the optimization of MSC-based therapies by systematically assessing and comparing the priming type-specific functional features of hAMSCs. These findings highlight new strategies for enhancing the therapeutic efficacy of MSCs, particularly in the context of multifactorial diseases, paving the way for the use of hAMSC-derived products in clinical practice.

18.
Biomed Pharmacother ; 174: 116514, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574618

RESUMO

Plant-derived nanovesicles (PDNVs) have recently emerged as natural delivery systems of biofunctional compounds toward mammalian cells. Considering their already described composition, anti-inflammatory properties, stability, and low toxicity, PDNVs offer a promising path for developing new preventive strategies for several inflammatory diseases, among which the inflammatory bowel disease (IBD). In this study, we explore the protective effects of industrially produced lemon vesicles (iLNVs) in a rat model of IBD. Characterization of iLNVs reveals the presence of small particles less than 200 nm in size and a profile of bioactive compounds enriched in flavonoids and organic acids with known beneficial properties. In vitro studies on human macrophages confirm the safety and anti-inflammatory effects of iLNVs, as evidenced by the reduced expression of pro-inflammatory cytokines and increased levels of anti-inflammatory markers. As evidenced by in vivo experiments, pre-treatment with iLNVs significantly alleviates symptoms and histological features in 2,4 dinitrobenzensulfuric acid (DNBS)-induced colitis in rats. Molecular pathway analysis reveals modulation of NF-κB and Nrf2, indicating anti-inflammatory and antioxidant effects. Finally, iLNVs affects gut microbiota composition, improving the consistent colitis-related alterations. Overall, we demonstrated the protective role of industrially produced lemon nanovesicles against colitis and emphasized their potential in managing IBD through multifaceted mechanisms.


Assuntos
Anti-Inflamatórios , Antioxidantes , Citrus , Colite , Microbioma Gastrointestinal , Animais , Anti-Inflamatórios/farmacologia , Citrus/química , Colite/patologia , Colite/tratamento farmacológico , Colite/induzido quimicamente , Colite/microbiologia , Colite/metabolismo , Masculino , Antioxidantes/farmacologia , Ratos , Humanos , Microbioma Gastrointestinal/efeitos dos fármacos , Nanopartículas/química , Ratos Wistar , Modelos Animais de Doenças , Citocinas/metabolismo , NF-kappa B/metabolismo
19.
Biomedicines ; 11(3)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36979668

RESUMO

Ischemia/reperfusion injury (IRI) is a multistep damage that occurs in several tissues when a blood flow interruption is inevitable, such as during organ surgery or transplantation. It is responsible for cell death and tissue dysfunction, thus leading, in the case of transplantation, to organ rejection. IRI takes place during reperfusion, i.e., when blood flow is restored, by activating inflammation and reactive oxygen species (ROS) production, causing mitochondrial damage and apoptosis of parenchymal cells. Unfortunately, none of the therapies currently in use are definitive, prompting the need for new therapeutic approaches. Scientific evidence has proven that mesenchymal stem/stromal cells (MSCs) can reduce inflammation and ROS, prompting this cellular therapy to also be investigated for treatment of IRI. Moreover, it has been shown that MSC therapeutic effects were mediated in part by their secretome, which appears to be involved in immune regulation and tissue repair. For these reasons, mediated MSC paracrine function might be key for injury amelioration upon IRI damage. In this review, we highlight the scientific literature on the potential beneficial use of MSCs and their products for improving IRI outcomes in different tissues/organs, focusing in particular on the paracrine effects mediated by MSCs, and on the molecular mechanisms behind these effects.

20.
World J Stem Cells ; 15(5): 400-420, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37342218

RESUMO

Mesenchymal stromal/stem cells (MSCs) have shown significant therapeutic potential, and have therefore been extensively investigated in preclinical studies of regenerative medicine. However, while MSCs have been shown to be safe as a cellular treatment, they have usually been therapeutically ineffective in human diseases. In fact, in many clinical trials it has been shown that MSCs have moderate or poor efficacy. This inefficacy appears to be ascribable primarily to the heterogeneity of MSCs. Recently, specific priming strategies have been used to improve the therapeutic properties of MSCs. In this review, we explore the literature on the principal priming approaches used to enhance the preclinical inefficacy of MSCs. We found that different priming strategies have been used to direct the therapeutic effects of MSCs toward specific pathological processes. Particularly, while hypoxic priming can be used primarily for the treatment of acute diseases, inflammatory cytokines can be used mainly to prime MSCs in order to treat chronic immune-related disorders. The shift in approach from regeneration to inflammation implies, in MSCs, a shift in the production of functional factors that stimulate regenerative or anti-inflammatory pathways. The opportunity to fine-tune the therapeutic properties of MSCs through different priming strategies could conceivably pave the way for optimizing their therapeutic potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA