Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Exp Biol ; 222(Pt 17)2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31371401

RESUMO

Tissue repair is an adaptive and widespread metazoan response. It is characterised by different cellular mechanisms and complex signalling networks that involve numerous growth factors and cytokines. In higher animals, transforming growth factor-ß (TGF-ß) signalling plays a fundamental role in wound healing. In order to evaluate the involvement of TGF superfamily members in lower invertebrate tissue regeneration, sequences for putative TGF ligands and receptors were isolated from the transcriptome of the marine sponge Chondrosia reniformis We identified seven transcripts that coded for TGF superfamily ligands and three for TGF superfamily receptors. Phylogenetically, C. reniformis TGF ligands were not grouped into any TGF superfamily clades and thus presumably evolved independently, whereas the TGF receptors clustered in the Type I receptor group. We performed gene expression profiling of these transcripts in sponge regenerating tissue explants. Data showed that three ligands (TGF1, TGF3 and TGF6) were mainly expressed during early regeneration and seemed to be involved in stem cell maintenance, whereas two others (TGF4 and TGF5) were strongly upregulated during late regeneration and thus were considered pro-differentiating factors. The presence of a strong TGF inhibitor, SB431542, blocked the restoration of the exopinacoderm layer in the sponge explants, confirming the functional involvement of the TGF pathway in tissue regeneration in these early evolved animals.


Assuntos
Família Multigênica/fisiologia , Poríferos/fisiologia , Regeneração/genética , Fatores de Crescimento Transformadores/genética , Animais , Perfilação da Expressão Gênica , Fatores de Crescimento Transformadores/metabolismo
2.
Dis Aquat Organ ; 135(3): 227-239, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31535618

RESUMO

Sponges are considered promising sources of biomolecules for both pharmaceutical and cosmetic interests as well as for the production of biomaterials suitable for tissue engineering and regenerative medicine. Accordingly, the ability to grow sponges in captivity and in healthy conditions to increase their biomass is a required goal for the development of sponge aquaculture systems. To date, little information is available about the pathogenicity of fungi associated with sponges. In our study, we identified an infection in freshly collected specimens of Chondrosia reniformis (Porifera, Demospongiae) and determined that the fungus Aspergillus tubingensis was the pathogen responsible. This is the first description of a natural infection of C. reniformis by A. tubingensis. Despite raising an inflammatory response by means of an increase in tumour necrosis factor (TNF) mRNA, the infected C. reniformis specimens were not able to control the fungal infection, leading to rotting in 15 d. Characterization of this infection shows that a widely distributed fungus can represent a potential hazard to sponge aquaculture industries and how, especially in stressed or compromised marine environments, this fungus could represent a fatal opportunistic pathogen.


Assuntos
Poríferos , Animais , Aquicultura , Aspergillus
3.
Mar Drugs ; 16(4)2018 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-29596370

RESUMO

Collagen is involved in the formation of complex fibrillar networks, providing the structural integrity of tissues. Its low immunogenicity and mechanical properties make this molecule a biomaterial that is extremely suitable for tissue engineering and regenerative medicine (TERM) strategies in human health issues. Here, for the first time, we performed a thorough screening of four different methods to obtain sponge collagenous fibrillar suspensions (FSs) from C. reniformis demosponge, which were then chemically, physically, and biologically characterized, in terms of protein, collagen, and glycosaminoglycans content, viscous properties, biocompatibility, and antioxidant activity. These four FSs were then tested for their capability to generate crosslinked or not thin sponge collagenous membranes (SCMs) that are suitable for TERM purposes. Two types of FSs, of the four tested, were able to generate SCMs, either from crosslinking or not, and showed good mechanical properties, enzymatic degradation resistance, water binding capacity, antioxidant activity, and biocompatibility on both fibroblast and keratinocyte cell cultures. Finally, our results demonstrate that it is possible to adapt the extraction procedure in order to alternatively improve the mechanical properties or the antioxidant performances of the derived biomaterial, depending on the application requirements, thanks to the versatility of C. reniformis extracellular matrix extracts.


Assuntos
Materiais Biocompatíveis , Colágeno/química , Teste de Materiais , Poríferos/química , Animais , Compostos de Bifenilo , Sequestradores de Radicais Livres , Membranas Artificiais , Microscopia Eletrônica de Varredura , Picratos
4.
Ecotoxicology ; 27(9): 1261-1271, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30242594

RESUMO

This study was conducted to investigate the toxic effects of fipronil on common carp (Cyprinus carpio). The trial was performed in laboratory of Department of Life Sciences at the Islamia University of Bahawalpur, Punjab, Pakistan. Total of 72 fishes, with apparently no clinical signs were purchased from local fish hatchery near Bahawalpur, Punjab, Pakistan. After 2 weeks of acclimatization fish were divided into six groups in glass aquaria (each having 100 liters of water capacity) and treated with different concentrations of fipronil for 12 days: 0 mg/L-control group (A),0.02 mg/L (B),0.04 mg/L (C),0.06 mg/L (D),0.08 mg/L (E) and 0.10 mg/L (F). Blood samples were taken every 4 days for evaluation of hemato-biochemical parameters. Fish in high doses treated groups show severe abnormalities in clinical-hematological and biochemical parameters. At high dose in group E and F fish show clinical ailments such as convulsions, jerking, faintness, increase in operculum movement, body curvature and breathing difficulty. Erythrocyte count, hemoglobin, hematocrit were decreased significantly (P < 0.05) and mean corpuscular volume, total leukocyte count, neutrophils, monocytes, and lymphocytes were significantly increased. Biochemical parameters including urea, creatinine, cholesterol, triglyceride, glucose were significantly increased but albumin was significantly decreased. Nuclear and cellular abnormalities were also increased in high dose treated groups. Hence fipronil induces clinico-hematological and serum biochemical changes in common carp C. carpio.


Assuntos
Carpas/fisiologia , Pirazóis/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Hematócrito , Testes de Toxicidade
5.
J Exp Biol ; 220(Pt 21): 4007-4015, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29093191

RESUMO

Exposure to crystalline silica particles causes silicosis, an occupational disease leading to an overproduction of collagen in the lung. The first step of this pathology is characterized by the release of inflammatory mediators. Tumour necrosis factor (TNF) is a pro-inflammatory cytokine directly involved in silica-induced pulmonary fibrosis. The marine demosponge Chondrosia reniformis is able to incorporate silica grains and partially dissolve the crystalline forms apparently without toxic effects. In the present work, C. reniformis tissue explants were treated with fine quartz dust and the expression level of fibrogenic genes was assayed by qPCR, demonstrating an overexpression of a fibrillar and a non-fibrillar collagen and of prolyl-4-hydroxylase enzyme. The deposition of new collagen could also be documented in quartz-treated sponge explants. Furthermore, TNF pro-inflammatory cytokine overexpression and involvement in silica-induced sponge collagen biosynthesis was demonstrated in quartz-treated explants as compared with controls by means of specific TNF inhibitors affecting the fibrogenic gene response. As no documentable detrimental effect was observed in treated explants, we conclude that the C. reniformis unique quartz engulfment and erosion is physiological and beneficial to the animal, leading to new collagen synthesis and strengthening of the body stiffness. Thus, we put forward the hypothesis that an ancient physiological behaviour from the lowest of the Metazoa, persisting through evolution via the same molecular mediators such as TNF, may have become the cause of disease in the specialized tissues of higher animals such as mammals.


Assuntos
Poríferos/metabolismo , Dióxido de Silício/metabolismo , Animais , Colágeno/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
J Anat ; 228(1): 59-69, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26510631

RESUMO

Chronic renal disease is known to alter olfactory function, but the specific changes induced in olfactory organs during this process remain unclear. Of the uraemic toxins generated during renal disease, high levels of urea are known to induce hyposmic conditions. In this study, the effects of environmental exposure to elevated concentrations of urea (7, 13.5 and 20 g L(-1)) on the sensory mucosa of zebrafish in acute toxicity and chronic toxicity tests were described. It was observed that lamellae maintained structural integrity and epithelial thickness was slightly reduced, but only following exposure to the highest concentrations of urea. Pan-neuronal labelling with anti-Hu revealed a negative correlation with levels of urea, leading to investigation of whether distinct neuronal subtypes were equally sensitive. Using densitometric analysis of immunolabelled tissues, numbers of Gα olf-, TRPC2- and TrkA-expressing cells were compared, representing ciliated, microvillous and crypt neurons, respectively. The three neuronal subpopulations responded differently to increasing levels of urea. In particular, crypt cells were more severely affected than the other cell types, and Gα olf-immunoreactivity was found to increase when fish were exposed to low doses of urea. It can be concluded that exposure to moderate levels of urea leads to sensory toxicity directly affecting olfactory organs, in accordance with the functional olfactometric measurements previously reported in the literature.


Assuntos
Mucosa Olfatória/efeitos dos fármacos , Ureia/toxicidade , Poluentes da Água/toxicidade , Peixe-Zebra/fisiologia , Análise de Variância , Animais , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Imuno-Histoquímica , Bulbo Olfatório/efeitos dos fármacos , Neurônios Receptores Olfatórios/efeitos dos fármacos
7.
J Exp Biol ; 217(Pt 3): 463-71, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24143028

RESUMO

Paramecium primaurelia is a unicellular eukaryote that moves in freshwater by ciliary beating and responds to environmental stimuli by altering motile behaviour. The movements of the cilia are controlled by the electrical changes of the cell membrane: when the intraciliary Ca(2+) concentration associated with plasma membrane depolarization increases, the ciliary beating reverses its direction, and consequently the swimming direction changes. The ciliary reversal duration is correlated with the amount of Ca(2+) influx. Here, we evaluated the effects due to the activation or blockade of N-methyl-d-aspartic acid (NMDA) receptors on swimming behaviour in Paramecium. Paramecia normally swim forward, drawing almost linear tracks. We observed that the simultaneous administration of NMDA and glycine induced a partial ciliary reversal (PaCR) leading to a continuous spiral-like swim. Furthermore, the duration of continuous ciliary reversal (CCR), triggered by high external KCl concentrations, was longer in NMDA+glycine-treated cells. NMDA action required the presence of Ca(2+), as the normal forward swimming was restored when the ion was omitted from the extracellular milieu. The PaCR and the enhancement of CCR duration significantly decreased when the antagonists of the glutamate site D-AP5 or CGS19755, the NMDA channel blocker MK-801 or the glycine site antagonist DCKA was added. The action of NMDA+glycine was also abolished by Zn(2+) or ifenprodil, the GluN2A and the GluN2B NMDA-containing subunit blockers, respectively. Searches of the Paramecium genome database currently available indicate that the NMDA-like receptor with ligand-binding characteristics of an NMDA receptor-like complex, purified from rat brain synaptic membranes and found in some metazoan genomes, is also present in Paramecium. These results provide evidence that functional NMDA receptors similar to those typical of mammalian neuronal cells are present in the single-celled organism Paramecium and thus suggest that the glutamatergic NMDA system is a phylogenetically old behaviour-controlling mechanism.


Assuntos
Paramecium/fisiologia , Proteínas de Protozoários/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Cálcio/metabolismo , Glicina/metabolismo , N-Metilaspartato/metabolismo , Paramecium/efeitos dos fármacos , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/química , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/química , Natação
8.
Fish Physiol Biochem ; 40(6): 1793-800, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25092237

RESUMO

Among vertebrates, the physiologically uremic Chondrichthyes are the only class which are not presenting the ciliated olfactory receptor neurons in the olfactory neuroepithelium. The only sequenced genome for this class revealed only three olfactory receptor genes and the immunohistochemical detection of G protein alpha subunit typically coupled to the olfactory receptors (Gα(olf)) failed in different species. Chronic renal disease can represent a cause of olfactory impairment in human. In this context, our present study focused on investigating potential effects of high urea concentration on the olfactory epithelium of vertebrates. Larvae of the teleost fish Danio rerio were exposed to urea in order to assess the effects on the olfactory signal transduction; in particular on both the olfactory receptors and the Gα(olf). The endocytosis of neutral red dye in the olfactory mucosa was detected in control and urea-exposed larvae. The amount of neutral red dye uptake was used as a marker of binding and internalization of the Gα(olf). The neutral red dye endocytosis was not affected by urea exposure, hence suggesting that the presence of the Gα(olf) and their binding to the odorants are not affected by urea treatment, either. The presence and distribution of Gα(olf) were investigated in the olfactory epithelium of control and urea-exposed larvae, using a commercial antibody. The immunoreactivity was increased after urea treatment, suggesting an effect of urea on the expression or degradation of this G protein alpha subunit.


Assuntos
Olfato/fisiologia , Ureia/farmacologia , Peixe-Zebra/fisiologia , Sequência de Aminoácidos , Animais , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/fisiologia , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Larva/efeitos dos fármacos , Larva/fisiologia , Vermelho Neutro , Transdução de Sinais/efeitos dos fármacos , Olfato/efeitos dos fármacos , Peixe-Zebra/embriologia
9.
Environ Monit Assess ; 186(7): 4249-59, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24590232

RESUMO

The aim was to investigate the toxicity of selected metal oxide nanoparticles (MO-NPs) on the brine shrimp Artemia salina, by evaluating mortality and behavioural and biochemical responses. Larvae were exposed to tin(IV) oxide (stannic oxide (SnO2)), cerium(IV) oxide (CeO2) and iron(II, III) oxide (Fe3O4) NPs for 48 h in seawater, with MO-NP suspensions from 0.01 to 1.0 mg/mL. Mortality and behavioural responses (swimming speed alteration) and enzymatic activities of cholinesterase, glutathione-S-transferase and catalase were evaluated. Although the MO-NPs did not induce any mortality of the larvae, they caused changes in behavioural and biochemical responses. Swimming speed significantly decreased in larvae exposed to CeO2 NPs. Cholinesterase and glutathione-S-transferase activities were significantly inhibited in larvae exposed to SnO2 NPs, whereas cholinesterase activity significantly increased after CeO2 NP and Fe3O4 NP exposure. Catalase activity significantly increased in larvae exposed to Fe3O4 NPs. In conclusion, swimming alteration and cholinesterase activity represent valid endpoints for MO-NP exposure, while glutathione-S-transferase and catalase activities appear to be NP-specific.


Assuntos
Nanopartículas Metálicas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Artemia , Catalase/metabolismo , Monitoramento Ambiental , Glutationa Transferase/metabolismo , Larva , Óxidos/toxicidade
11.
Animals (Basel) ; 12(5)2022 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35268231

RESUMO

The olfactory system is constituted in a consistent way across vertebrates. Nasal structures allow water/air to enter an olfactory cavity, conveying the odorants to a sensory surface. There, the olfactory neurons form, with their axons, a sensory nerve projecting to the telencephalic zone-named the olfactory bulb. This organization comes with many different arrangements, whose meaning is still a matter of debate. A morphological description of the olfactory system of many teleost species is present in the literature; nevertheless, morphological investigations rarely provide a quantitative approach that would help to provide a deeper understanding of the structures where sensory and elaborating events happen. In this study, the peripheral olfactory system of the Antarctic silverfish, which is a keystone species in coastal Antarctica ecosystems, has also been described, employing some quantitative methods. The olfactory chamber of this species is connected to accessory nasal sacs, which probably aid water movements in the chamber; thus, the head of the Antarctic silverfish is specialized to assure that the olfactory organ keeps in contact with a large volume of water-even when the fish is not actively swimming. Each olfactory organ, shaped like an asymmetric rosette, has, in adult fish, a sensory surface area of about 25 mm2, while each olfactory bulb contains about 100,000 neurons. The sensory surface area and the number of neurons in the primary olfactory brain region show that this fish invests energy in the detection and elaboration of olfactory signals and allow comparisons among different species. The mouse, for example-which is considered a macrosmatic vertebrate-has a sensory surface area of the same order of magnitude as that of the Antarctic silverfish, but ten times more neurons in the olfactory bulb. Catsharks, on the other hand, have a sensory surface area that is two orders of magnitude higher than that of the Antarctic silverfish, while the number of neurons has the same order of magnitude. The Antarctic silverfish is therefore likely to rely considerably on olfaction.

12.
Biofouling ; 26(2): 155-65, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19882419

RESUMO

In the present study, biochemical and immunochemical methods were used to investigate the presence and distribution of GABA, glutamate decarboxylase (GAD), GABA(B)R1 and GABA(A) gamma2 subunit receptors and the vesicular GABA transporter (vGAT) in the cyprid of Balanus amphitrite (=Amphibalanus amphitrite). GAD(65/67) immunoreactive neuron cell bodies and nerve fibers were detected in the central nervous system. Paired GAD(65/67) immunoreactive nerves running from the posterior ganglion to the body and limb muscles were detected. Thin GABA-immunoreactive nerve terminals were present on striated muscular fibers and in the antennules. Furthermore, GABA, GAD(65/67), GABA(B)R1 and GABA(A)gamma2 subunit receptors and vGAT were observed in the lateral compound eyes, and GABA(A)gamma2 subunit receptor immunoreactivity was seen in the naupliar eye. These results suggest a neurotransmitter/neuromodulatory role for GABA in thoracic muscle contraction and regulatory functions in compound eyes and antennules of B. amphitrite cyprids.


Assuntos
Thoracica/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Encéfalo/metabolismo , Cromatografia Líquida de Alta Pressão , Olho/metabolismo , Glutamato Descarboxilase/metabolismo , Imuno-Histoquímica , Subunidades Proteicas/metabolismo , Receptores de GABA-A/metabolismo , Receptores de GABA-B/metabolismo , Thoracica/anatomia & histologia , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Ácido gama-Aminobutírico/química
13.
Zoology (Jena) ; 141: 125796, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32464514

RESUMO

In vertebrates, the olfactory bulb (OB) is the zone of the brain devoted to receiving the olfactory stimuli. The size of the OB relative to the size of the brain has been positively correlated to a good olfactory capability but, recently, this correlation was questioned after new investigation techniques were developed. Among them, the isotropic fractionator allows to estimate the number of neurons and non-neurons in a given portion of nervous tissue. To date, this technique has been applied in a number of species; in particular the OB was separately analyzed in numerous mammals and in a single crocodile species. Thus, a quantitative description of the OB's cells is available for a small portion of vertebrates. Main aim of this work was to apply isotropic fractionator to investigate the olfactory capability of elasmobranch fishes, whose traditional concept of outstanding olfaction has recently been scaled down by anatomical and physiological studies. For this purpose, the OB of two elasmobranch species, Galeus melastomus and Scyliorhinus canicula, was studied leading to the determination of the number of neurons vs non-neurons in the OB of the specimens. In addition, the obtained cell quantification was related to the olfactory epithelium surface area to obtain a new parameter that encapsulates both information on the peripheral olfactory organ and the OB. The analyzed species resulted in an overall similar quantitative organization of the peripheral olfactory system; slight differences were detected possibly reflecting different environment preference and feeding strategy. Moreover, the non-neurons/neurons ratio of these species, compared to those available in the literature, seems to place elasmobranch fishes among the vertebrate species in which olfaction plays an important role.


Assuntos
Neurônios/citologia , Bulbo Olfatório/citologia , Tubarões/anatomia & histologia , Animais , Especificidade da Espécie
14.
Front Physiol ; 10: 245, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30930795

RESUMO

The olfactory organ of Chondrichthyes is characterized by a central support with several lamellae covered by a sensory olfactory epithelium. Although secondary folds are present on the lamellae in all the chondrichthyan species analyzed to date, their shape and size have not been described. We here analyze the olfactory organ of 13 elasmobranch and 1 holocephalan species, describe the shape of the secondary folds and evaluate how they contribute to the epithelial surface area. The secondary folds vary in shape and size, and they should always be considered when comparing the epithelial surface area among species; in fact, the increase of the area, due to the presence of the secondary folds, spans from 70 to 495% in the considered species. Because of the complexity of the shapes, we approach the description of the secondary folds by analyzing histological sections of the olfactory lamellae to obtain illustrative silhouettes. We introduce two indexes in order to describe a 2D-sectioned shape of the secondary folds. Considering the different numerical parameters which describe the morphology of the olfactory organ (secondary folds included), a principal component analysis elucidates the possible ecological role and phylogenetic relationship of the chondrichthyan olfactory organ.

15.
Heliyon ; 5(6): e01798, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31338440

RESUMO

Alterations in the control of apoptotic processes were observed in cells during space flight or under simulated microgravity, the latter obtained with the 3D-Random Positioning Machine (3D-RPM). Usually the proteins Bax and Bcl-2, act as pro- or anti-apoptotic regulators. Here we investigated the effects of simulated microgravity obtained by the 3D-RPM on cell viability, localization and expression of Bax and Bcl-2 in cultures of glial cancerous cells. We observed for the first time a transient cytoplasmic/nuclear translocation of Bax and Bcl-2 triggered by changing gravity vector. Bax translocates into the nucleus after 1 h, is present simultaneously in the cytoplasm after 6 h and comes back to the cytoplasm after 24 h. Bcl-2 translocate into the nucleus only after 6 h and comes back to the cytoplasm after 24 h. Physiological meaning, on the regulation of apoptotic event and possible applicative outcomes of such finding are discussed.

16.
Chemosphere ; 193: 1-7, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29121537

RESUMO

The use of pyrethroids has increased throughout the world over the past few decades, as organophosphate, carbamate and organochlorine insecticides are being phased out. Permethrin is widely used in the USA for crops treatment, at concentrations around 750 × 103 µg/L. In our study 3.6 µg/L permethrin decreases the fission-rate and the fruiting bodies formation of slime mould Dictyostelium discoideum. Whereas 3.6 × 104 µg/L kills the 100% of amoebae, showing a 24 h-LC50 = 96.6 µg/L. This concentration induces an increase in the pseudocholinesterase activity as well as in both butyrylcholinesterase and heat-shock-protein 70 presence. Our results highlight the high sensitivity of Dictyostelium to permethrin, at concentration of about 105 lesser than what used for agricultural pest control. If we match our results on 6 days of exposure, with the permethrin relatively slow permanence (30 days) in the aerobic soil, as well as the higher effect of permethrin than organophosphate, carbamate and organochlorine pesticides on D. discoideum, the damage on the dictyostelids community, by use of permethrin, is clear. Our data suggest that, if the sustainable agriculture implementation is a topic of the modern "industrial" farming, the permethrin cannot represent a reliable alternative to organochlorine, organophosphate or carbamate pesticides, in implementing Integrated Pest Management programmes.


Assuntos
Dictyostelium/efeitos dos fármacos , Permetrina/toxicidade , Agricultura , Corantes , Dictyostelium/crescimento & desenvolvimento , Inseticidas , Controle de Pragas , Praguicidas/farmacologia , Piretrinas/toxicidade
17.
Eur J Histochem ; 62(1): 2867, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29569873

RESUMO

Photobiomodulation (PBM) is a manipulation of cellular behavior using non-ablative low intensity light sources. This manipulation triggers a cascade of metabolic effects and physiological changes resulting in improved tissue repair, of benefit in the treatment of tissue injury, degenerative or autoimmune diseases. PBM has witnessed an exponential increase in both clinical instrument technology and applications. It is therefore of benefit to find reliable experimental models to test the burgeoning laser technology for medical applications. In our work, we proposed the earthworm Dendrobaena veneta for the study of non-ablative laser-light effects on wound healing. In our preliminary work, D. veneta has been shown to be positively affected by PBM. New tests using D. veneta were set up to evaluate the effectiveness of a chosen 808 nm-64 J/cm2-1W-CW laser therapy using the AB2799 hand-piece with flat-top bean profile, on the wound healing process of the earthworm. Effective outcome was assimilated through examining the macroscopic, histological, and molecular changes on the irradiated posterior-segment of excised-earthworms with respect to controls. Three successive treatments, one every 24 hours, were concluded as sufficient to promote the wound healing, by effects on muscular and blood vessel contraction, decrement of bacteria load, reduction of inflammatory processes and tissue degeneration. D. veneta was demonstrated to be a reliable experimental organism that meets well the 3Rs principles and the National Science Foundation statement. Through their genetic and evolutionary peculiarity, comparable to those of scientifically accredited models, D. veneta allows the effect of laser therapies by multidisciplinary methods, at various degree of complexity and costs to be investigated.


Assuntos
Terapia com Luz de Baixa Intensidade , Oligoquetos/ultraestrutura , Cicatrização/efeitos da radiação , Animais , Carga Bacteriana/efeitos da radiação , Modelos Animais de Doenças , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP72/metabolismo , Padrões de Referência , Análise de Sobrevida , Temperatura
18.
Microsc Res Tech ; 70(11): 944-51, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17661369

RESUMO

Gamma-amino butyric acid (GABA) is believed to be the principal inhibitory neurotransmitter in the mammalian central nervous system, a function that has been extended to a number of invertebrate systems. The presence of GABA in the marine demosponge Chondrilla nucula was verified using immunofluorescence detection and high-pressure liquid chromatography. A strong GABA-like immunoreactivity (IR) was found associated with choanocytes, exopinacocytes, endopinacocytes lining inhalant, and exhalant canals, as well as in archaeocytes scattered in the mesohyl. The capacity to synthesize GABA from glutamate and to transport it into the vesicles was confirmed by the presence in C. nucula of glutamate decarboxylase (GAD) and vesicular GABA transporters (vGATs), respectively. GAD-like and vGAT-like IR show the same distribution as GABA-like IR. Supporting the similarity between sponge and mammalian proteins, bands with an apparent molecular weight of about 65-67 kDa and 57 kDa were detected using antibodies raised against mammalian GAD and vGAT, respectively. A functional metabotropic GABA(B)-like receptor is also present in C. nucula. Indeed, both GABA(B) R1 and R2 isoforms were detected by immunoblot and immunofluorescence. Also in this case, IR was found in choanocytes, exopinacocytes, and endopinacocytes. The content of GABA in C. nucula amounts to 1225.75 +/- 79 pmol/mg proteins and GABA is released into the medium when sponge cells are depolarized. In conclusion, this study is the first indication of the existence of the GABA biosynthetic enzyme GAD and of the GABA transporter vGAT in sponges, as well as the first demonstration that the neurotransmitter GABA is released extracellularly.


Assuntos
Poríferos/fisiologia , Ácido gama-Aminobutírico/fisiologia , Animais , Transporte Biológico Ativo , Cromatografia Líquida de Alta Pressão , Imunofluorescência , Glutamato Descarboxilase/metabolismo , Isoformas de Proteínas/metabolismo
19.
Neurosci Lett ; 413(2): 173-6, 2007 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-17174032

RESUMO

Olfactory marker protein (OMP) is a protein expressed in the mature olfactory and vomeronasal neurons of many vertebrates, such as mammals, amphibians and bony fishes. Aim of this work was to investigate the OMP expression in the olfactory epithelium of the shark Scyliorhinus canicula (Linnaeus, 1758), by immunohistochemistry (IHC). Immunoreactivity was detected in the olfactory receptor neurons, in the crypt neurons and in the nerve fibers below the epithelium. Although very little is known about the OMP's function, its involvement in synaptogenesis, transduction cascade, neurogenesis and development of olfactory system has been suggested. The present work shows for the first time OMP's presence in a cartilaginous fish.


Assuntos
Proteína de Marcador Olfatório/metabolismo , Mucosa Olfatória/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Tubarões/metabolismo , Animais , Evolução Molecular , Imuno-Histoquímica , Mucosa Olfatória/citologia , Condutos Olfatórios/citologia , Condutos Olfatórios/metabolismo , Neurônios Receptores Olfatórios/citologia , Filogenia , Tubarões/anatomia & histologia , Olfato/fisiologia , Especificidade da Espécie
20.
Anat Rec (Hoboken) ; 300(11): 2039-2045, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28681530

RESUMO

Several papers regard the anatomy of the peripheral olfactory organ, the olfactory rosette, in the class of Chondrichtyes. The complex shape of this organ and the differences among species give clues to functional, evolutionary, and ecological observations; data on a larger number of species are needed in order to have a more complete insight. The rosette is made up of a central support and of numerous lamellae, which are lined by the sensory epithelium. The size, shape and number of these lamellae, which are highly variable among species, are noteworthy because they affect the sensory surface area, the water dynamic within the olfactory chamber, and the organization of the olfactory bulb. In the literature about Chondrichthyes, the definition of olfactory lamella is confused, because authors use the same words for different structures. The average number of lamellae is distinctive for each species, and the meaning of this difference is not completely understood and, in this frame, a not unambiguous definition of lamella leads to difficulties in comparing data from different publications and analyzing them together. We aim to give here an unambiguous definition of olfactory lamella, that should be each single fold of tissue extending from the raphe, and of lamellar number of a given species, that should be the average number of lamellae in one olfactory organ. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 300:2039-2045, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Epitélio/anatomia & histologia , Peixes/anatomia & histologia , Bulbo Olfatório/anatomia & histologia , Mucosa Olfatória/anatomia & histologia , Animais , Evolução Biológica , Peixes/fisiologia , Mucosa Olfatória/fisiologia , Olfato/fisiologia , Terminologia como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA