Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Biol Chem ; 300(8): 107567, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002685

RESUMO

The Golgi compartment performs a number of crucial roles in the cell. However, the exact molecular mechanisms underlying these actions are not fully defined. Pathogenic mutations in genes encoding Golgi proteins may serve as an important source for expanding our knowledge. For instance, mutations in the gene encoding Transmembrane protein 165 (TMEM165) were discovered as a cause of a new type of congenital disorder of glycosylation (CDG). Comprehensive studies of TMEM165 in different model systems, including mammals, yeast, and fish uncovered the new realm of Mn2+ homeostasis regulation. TMEM165 was shown to act as a Ca2+/Mn2+:H+ antiporter in the medial- and trans-Golgi network, pumping the metal ions into the Golgi lumen and protons outside. Disruption of TMEM165 antiporter activity results in defects in N- and O-glycosylation of proteins and glycosylation of lipids. Impaired glycosylation of TMEM165-CDG arises from a lack of Mn2+ within the Golgi. Nevertheless, Mn2+ insufficiency in the Golgi is compensated by the activity of the ATPase SERCA2. TMEM165 turnover has also been found to be regulated by Mn2+ cytosolic concentration. Besides causing CDG, recent investigations have demonstrated the functional involvement of TMEM165 in several other pathologies including cancer and mental health disorders. This systematic review summarizes the available information on TMEM165 molecular structure, cellular function, and its roles in health and disease.

2.
J Pharmacol Exp Ther ; 389(1): 34-39, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38336381

RESUMO

Emerging evidence indicates that the relationship between coronavirus disease 2019 (COVID-19) and diabetes is 2-fold: 1) it is known that the presence of diabetes and other metabolic alterations poses a considerably high risk to develop a severe COVID-19; 2) patients who survived a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection have an increased risk of developing new-onset diabetes. However, the mechanisms underlying this association are mostly unknown, and there are no reliable biomarkers to predict the development of new-onset diabetes. In the present study, we demonstrate that a specific microRNA (miR-34a) contained in circulating extracellular vesicles released by endothelial cells reliably predicts the risk of developing new-onset diabetes in COVID-19. This association was independent of age, sex, body mass index (BMI), hypertension, dyslipidemia, smoking status, and D-dimer. SIGNIFICANCE STATEMENT: We demonstrate for the first time that a specific microRNA (miR-34a) contained in circulating extracellular vesicles released by endothelial cells is able to reliably predict the risk of developing diabetes after having contracted coronavirus disease 2019 (COVID-19). This association was independent of age, sex, body mass index (BMI), hypertension, dyslipidemia, smoking status, and D-dimer. Our findings are also relevant when considering the emerging importance of post-acute sequelae of COVID-19, with systemic manifestations observed even months after viral negativization (long COVID).


Assuntos
COVID-19 , Diabetes Mellitus , Dislipidemias , Hipertensão , MicroRNAs , Humanos , COVID-19/complicações , Síndrome de COVID-19 Pós-Aguda , SARS-CoV-2 , Células Endoteliais , Progressão da Doença
3.
Cardiovasc Diabetol ; 23(1): 268, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039512

RESUMO

Ischemia with non-obstructive coronary artery (INOCA) is a common cause of hospital admissions, leading to negative outcomes and reduced quality of life. Central to its pathophysiology is endothelial dysfunction, which contributes to myocardial ischemia despite the absence of significant coronary artery blockage. Addressing endothelial dysfunction is essential in managing INOCA to alleviate symptoms and prevent cardiovascular events. Recent studies have identified diabetes mellitus (DM) as a significant factor exacerbating INOCA complications by promoting endothelial impairment and coronary microvascular dysfunction. MicroRNAs (miRNAs) have emerged as potential biomarkers and therapeutic targets in various biological processes, including endothelial dysfunction and cardiovascular diseases. However, research on miRNA biomarkers in INOCA patients is sparse. In this study, we examined a panel of circulating miRNAs involved in the regulation of endothelial function in INOCA patients with and without DM. We analyzed miRNA expression using RT-qPCR in a cohort of consecutive INOCA patients undergoing percutaneous coronary intervention. We detected a significant dysregulation of miR-363-5p and miR-92a-3p in INOCA patients with DM compared to those without DM, indicating their role as biomarkers for predicting and monitoring endothelial dysfunction in INOCA patients with DM.


Assuntos
MicroRNA Circulante , Doença da Artéria Coronariana , MicroRNAs , Humanos , Masculino , MicroRNAs/genética , MicroRNAs/sangue , MicroRNAs/metabolismo , Feminino , Pessoa de Meia-Idade , Idoso , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/sangue , MicroRNA Circulante/sangue , MicroRNA Circulante/genética , Diabetes Mellitus/genética , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/sangue , Intervenção Coronária Percutânea/efeitos adversos , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Marcadores Genéticos , Células Endoteliais/metabolismo , Estudos de Casos e Controles
4.
Front Cardiovasc Med ; 11: 1396996, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756750

RESUMO

Fabry disease (FD), also known as Anderson-Fabry disease, is a hereditary disorder of glycosphingolipid metabolism, caused by a deficiency of the lysosomal alpha-galactosidase A enzyme. This causes a progressive accumulation of glycosphingolipids in tissues and organs which represents the main pathogenetic mechanism of FD. The disease is progressive and multisystemic and is characterized by early symptoms and late complications (renal, cardiac and neurological dysfunction). Fatigue and exercise intolerance are early common symptoms in FD patients but the specific causes are still to be defined. In this narrative review, we deal with the contribution of cardiac and pulmonary dysfunctions in determining fatigue and exercise intolerance in FD patients.

5.
Front Cardiovasc Med ; 11: 1341590, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38327490

RESUMO

Fabry disease (FD) is a lysosomal storage disorder due to the impaired activity of the α-galactosidase A (GLA) enzyme which induces Gb3 deposition and multiorgan dysfunction. Exercise intolerance and fatigue are frequent and early findings in FD patients, representing a self-standing clinical phenotype with a significant impact on the patient's quality of life. Several determinants can trigger fatigability in Fabry patients, including psychological factors, cardiopulmonary dysfunctions, and primary alterations of skeletal muscle. The "metabolic hypothesis" to explain skeletal muscle symptoms and fatigability in Fabry patients is growing acknowledged. In this report, we will focus on the primary alterations of the motor system emphasizing the role of skeletal muscle metabolic disarrangement in determining the altered exercise tolerance in Fabry patients. We will discuss the most recent findings about the metabolic profile associated with Fabry disease offering new insights for diagnosis, management, and therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA