Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Neurobiol Dis ; : 106595, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972360

RESUMO

Parkinson's disease (PD) and Dementia with Lewy bodies (DLB) are characterized by neuronal α-synuclein (α-syn) inclusions termed Lewy Pathology, which are abundant in the amygdala. The basolateral amygdala (BLA), in particular, receives projections from the thalamus and cortex. These projections play a role in cognition and emotional processing, behaviors which are impaired in α-synucleinopathies. To understand if and how pathologic α-syn impacts the BLA requires animal models of α-syn aggregation. Injection of α-syn pre-formed fibrils (PFFs) into the striatum induces robust α-syn aggregation in excitatory neurons in the BLA that corresponds with reduced contextual fear conditioning. At early time points after aggregate formation, cortico-amygdala excitatory transmission is abolished. The goal of this project was to determine if α-syn inclusions in the BLA induce synaptic degeneration and/or morphological changes. In this study, we used C57BL/6 J mice injected bilaterally with PFFs in the dorsal striatum to induce α-syn aggregate formation in the BLA. A method was developed using immunofluorescence and three-dimensional reconstruction to analyze excitatory cortico-amygdala and thalamo-amygdala presynaptic terminals closely juxtaposed to postsynaptic densities. The abundance and morphology of synapses were analyzed at 6- or 12-weeks post-injection of PFFs. α-Syn aggregate formation in the BLA did not cause a significant loss of synapses, but cortico-amygdala and thalamo-amygdala presynaptic terminals and postsynaptic densities with aggregates of α-syn show increased volumes, similar to previous findings in human DLB cortex, and in non-human primate models of PD. Transmission electron microscopy showed that asymmetric synapses in mice with PFF-induced α-syn aggregates have reduced synaptic vesicle intervesicular distances, similar to a recent study showing phospho-serine-129 α-syn increases synaptic vesicle clustering. Thus, pathologic α-syn causes major alterations to synaptic architecture in the BLA, potentially contributing to behavioral impairment and amygdala dysfunction observed in synucleinopathies.

2.
Am J Physiol Renal Physiol ; 322(3): F335-F343, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35100821

RESUMO

Night shift work increases risk of cardiovascular disease associated with an irregular eating schedule. Elevating this risk is the high level of salt intake observed in the typical Western diet. Renal Na+ excretion has a distinct diurnal pattern, independent of time of intake, yet the interactions between the time of intake and the amount of salt ingested are not clear. The hypothesis of the present study was that limiting food intake to the typically inactive period in addition to high-salt (HS) feeding will disrupt the diurnal rhythm of renal Na+ excretion. Male Sprague-Dawley rats were placed on either normal-salt (NS; 0.49% NaCl) or HS (4% NaCl) diets. Rats were housed in metabolic cages and allowed food ad libitum and then subjected to inactive period time-restricted feeding (iTRF) for 5 days. As expected, rats fed NS and allowed food ad libitum had a diurnal pattern of Na+ excretion. The diurnal pattern of Na+ excretion was not significantly different after 5 days of iTRF compared with ad libitum rats. In response to HS, the diurnal pattern of Na+ excretion was similar to NS-fed rats. However, this pattern was attenuated after 5 days of HS iTRF. The diurnal excretion pattern of urinary aldosterone was abolished in both NS iTRF and HS iTRF rats. These data support the hypothesis that HS intake combined with iTRF impairs circadian mechanisms associated with renal Na+ excretion.NEW & NOTEWORTHY Timing of food intake normally has little effect on the diurnal pattern of Na+ and water excretion. However, rats on a high-salt diet were unable to maintain this pattern, yet K+ excretion was more readily adjusted to match timing of intake. These data support the hypothesis that Na+ and water homeostasis are impacted by timing of high-salt diets.


Assuntos
Ritmo Circadiano , Cloreto de Sódio na Dieta , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Sódio , Cloreto de Sódio , Cloreto de Sódio na Dieta/metabolismo , Água
3.
Diabetologia ; 64(11): 2575-2588, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34430981

RESUMO

AIMS/HYPOTHESIS: Hypothalamic inflammation and sympathetic nervous system hyperactivity are hallmark features of the metabolic syndrome and type 2 diabetes. Hypothalamic inflammation may aggravate metabolic and immunological pathologies due to extensive sympathetic activation of peripheral tissues. Loss of somatostatinergic (SST) neurons may contribute to enhanced hypothalamic inflammation. METHODS: The present data show that leptin receptor-deficient (db/db) mice exhibit reduced hypothalamic SST neurons, particularly in the periventricular nucleus. We model this finding, using adeno-associated virus delivery of diphtheria toxin subunit A (DTA) driven by an SST-cre system to deplete these neurons in Sstcre/gfp mice (SST-DTA). RESULTS: SST-DTA mice exhibit enhanced hypothalamic c-Fos expression and brain inflammation as demonstrated by microglial and astrocytic activation. Bone marrow from SST-DTA mice undergoes skewed haematopoiesis, generating excess granulocyte-monocyte progenitors and increased proinflammatory (C-C chemokine receptor type 2; CCR2hi) monocytes. SST-DTA mice exhibited a 'diabetic retinopathy-like' phenotype: reduced visual function by optokinetic response (0.4 vs 0.25 cycles/degree; SST-DTA vs control mice); delayed electroretinogram oscillatory potentials; and increased percentages of retinal monocytes. Finally, mesenteric visceral adipose tissue from SST-DTA mice was resistant to catecholamine-induced lipolysis, displaying 50% reduction in isoprenaline (isoproterenol)-induced lipolysis compared with control littermates. Importantly, hyperglycaemia was not observed in SST-DTA mice. CONCLUSIONS/INTERPRETATION: The isolated reduction in hypothalamic SST neurons was able to recapitulate several hallmark features of type 2 diabetes in disease-relevant tissues.


Assuntos
Tecido Adiposo/metabolismo , Medula Óssea/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Retina/metabolismo , Somatostatina/metabolismo , Animais , Encéfalo/metabolismo , Diabetes Mellitus Tipo 2/diagnóstico , Toxina Diftérica/toxicidade , Eletrorretinografia , Citometria de Fluxo , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real
4.
Neurobiol Dis ; 158: 105454, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34333153

RESUMO

Patients with Alzheimer's disease (AD) often have fragmentation of sleep/wake cycles and disrupted 24-h (circadian) activity. Despite this, little work has investigated the potential underlying day/night disruptions in cognition and neuronal physiology in the hippocampus. The molecular clock, an intrinsic transcription-translation feedback loop that regulates circadian behavior, may also regulate hippocampal neurophysiological activity. We hypothesized that disrupted diurnal variation in clock gene expression in the hippocampus corresponds with loss of normal day/night differences in membrane excitability, synaptic physiology, and cognition. We previously reported disrupted circadian locomotor rhythms and neurophysiological output of the suprachiasmatic nucleus (the primary circadian clock) in Tg-SwDI mice with human amyloid-beta precursor protein mutations. Here, we report that Tg-SwDI mice failed to show day/night differences in a spatial working memory task, unlike wild-type controls that exhibited enhanced spatial working memory at night. Moreover, Tg-SwDI mice had lower levels of Per2, one of the core components of the molecular clock, at both mRNA and protein levels when compared to age-matched controls. Interestingly, we discovered neurophysiological impairments in area CA1 of the Tg-SwDI hippocampus. In controls, spontaneous inhibitory post-synaptic currents (sIPSCs) in pyramidal cells showed greater amplitude and lower inter-event interval during the day than the night. However, the normal day/night differences in sIPSCs were absent (amplitude) or reversed (inter-event interval) in pyramidal cells from Tg-SwDI mice. In control mice, current injection into CA1 pyramidal cells produced more firing during the night than during the day, but no day/night difference in excitability was observed in Tg-SwDI mice. The normal day/night difference in excitability in controls was blocked by GABA receptor inhibition. Together, these results demonstrate that the normal diurnal regulation of inhibitory transmission in the hippocampus is diminished in a mouse model of AD, leading to decreased daytime inhibition onto hippocampal CA1 pyramidal cells. Uncovering disrupted day/night differences in circadian gene regulation, hippocampal physiology, and memory in AD mouse models may provide insight into possible chronotherapeutic strategies to ameliorate Alzheimer's disease symptoms or delay pathological onset.


Assuntos
Precursor de Proteína beta-Amiloide/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica/genética , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Memória Espacial , Transmissão Sináptica , Animais , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/fisiopatologia , Potenciais Pós-Sinápticos Excitadores/genética , Feminino , Antagonistas GABAérgicos/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Piramidais , Receptor PAR-2/biossíntese , Receptor PAR-2/genética
5.
Eur J Neurosci ; 51(1): 109-138, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30633846

RESUMO

Twenty-four-hour rhythmicity in physiology and behavior are driven by changes in neurophysiological activity that vary across the light-dark and rest-activity cycle. Although this neural code is most prominent in neurons of the primary circadian pacemaker in the suprachiasmatic nucleus (SCN) of the hypothalamus, there are many other regions in the brain where region-specific function and behavioral rhythmicity may be encoded by changes in electrical properties of those neurons. In this review, we explore the existing evidence for molecular clocks and/or neurophysiological rhythms (i.e., 24 hr) in brain regions outside the SCN. In addition, we highlight the brain regions that are ripe for future investigation into the critical role of circadian rhythmicity for local oscillators. For example, the cerebellum expresses rhythmicity in over 2,000 gene transcripts, and yet we know very little about how circadian regulation drives 24-hr changes in the neural coding responsible for motor coordination. Finally, we conclude with a discussion of how our understanding of circadian regulation of electrical properties may yield insight into disease mechanisms which may lead to novel chronotherapeutic strategies in the future.


Assuntos
Relógios Biológicos , Relógios Circadianos , Encéfalo , Ritmo Circadiano , Hipotálamo , Núcleo Supraquiasmático
6.
Neurobiol Learn Mem ; 160: 151-159, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30611883

RESUMO

Circadian rhythms greatly influence 24-h variation in cognition in nearly all organisms, including humans. Circadian clock impairment and sleep disruption are detrimental to hippocampus-dependent memory and negatively influence the acquisition and recall of learned behaviors. The circadian clock can become out of sync with the environment during circadian misalignment. Shift work represents a real-world model of circadian misalignment that can be studied for its physiological implications. The present study aimed to test the hypothesis that circadian misalignment disrupts vigilance and cognitive performance on occupationally relevant tasks using shift work as a model. As such, we sought to (1) explore the general effects of night- and day-shift worker schedules on sleep-wake parameters and core body temperature (CBT) phase, and (2) determine whether shift-type and CBT phase impact cognitive performance and vigilance at the end of a 12-h shift. We observed a sample of day-shift and night-shift hospital nurses over a 10-day period. At the end of three, consecutive, 12-h shifts (7 pm-7am or 7am-7 pm), participants completed a cognitive battery assessing vigilance, cognitive throughput, and medication calculation fluency (via an investigator developed and tested metric). Night-shift nurses exhibited significantly greater sleep fragmentation as well as a greater disparity between their wake-time and time of CBT minimum compared to day-shift nurses. Night-shift nurses exhibited significantly slower cognitive proficiency at the end of their shifts, even after adjustment for CBT phase. These results suggest that circadian disruption and reduced sleep quality both contribute to cognitive functioning and performance.


Assuntos
Atenção/fisiologia , Temperatura Corporal/fisiologia , Transtornos Cronobiológicos/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Recursos Humanos de Enfermagem Hospitalar , Desempenho Psicomotor/fisiologia , Jornada de Trabalho em Turnos/efeitos adversos , Privação do Sono/fisiopatologia , Sono/fisiologia , Pensamento/fisiologia , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Transtornos do Sono do Ritmo Circadiano/fisiopatologia , Adulto Jovem
7.
Am J Physiol Renal Physiol ; 314(1): F89-F98, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28971988

RESUMO

Speed JS, Hyndman KA, Roth K, Heimlich JB, Kasztan M, Fox BM, Johnston JG, Becker BK, Jin C, Gamble KL, Young ME, Pollock JS, Pollock DM. High dietary sodium causes dyssynchrony of the renal molecular clock in rats. Am J Physiol Renal Physiol 314: F89-F98, 2018. First published September 27, 2017; doi:10.1152/ajprenal.00028.2017.-Dyssynchrony of circadian rhythms is associated with various disorders, including cardiovascular and metabolic diseases. The cell autonomous molecular clock maintains circadian control; however, environmental factors that may cause circadian dyssynchrony either within or between organ systems are poorly understood. Our laboratory recently reported that the endothelin (ET-1) B (ETB) receptor functions to facilitate Na+ excretion in a time of day-dependent manner. Therefore, the present study was designed to determine whether high salt (HS) intake leads to circadian dyssynchrony within the kidney and whether the renal endothelin system contributes to control of the renal molecular clock. We observed that HS feeding led to region-specific alterations in circadian clock components within the kidney. For instance, HS caused a significant 5.5-h phase delay in the peak expression of Bmal1 and suppressed Cry1 and Per2 expression in the renal inner medulla, but not the renal cortex, of control rats. The phase delay in Bmal1 expression appears to be mediated by ET-1 because this phenomenon was not observed in the ETB-deficient rat. In cultured inner medullary collecting duct cells, ET-1 suppressed Bmal1 mRNA expression. Furthermore, Bmal1 knockdown in these cells reduced epithelial Na+ channel expression. These data reveal that HS feeding leads to intrarenal circadian dyssynchrony mediated, in part, through activation of ETB receptors within the renal inner medulla.


Assuntos
Proteínas CLOCK/metabolismo , Rim/metabolismo , Cloreto de Sódio na Dieta/metabolismo , Sódio na Dieta/metabolismo , Animais , Ritmo Circadiano/fisiologia , Endotelinas/metabolismo , Comportamento Alimentar/fisiologia , Masculino , Proteínas Circadianas Period/metabolismo , Ratos
8.
Neurobiol Dis ; 114: 194-200, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29540298

RESUMO

Disruption of circadian rhythms is commonly reported in individuals with Alzheimer's disease (AD). Neurons in the primary circadian pacemaker, the suprachiasmatic nucleus (SCN), exhibit daily rhythms in spontaneous neuronal activity which are important for maintaining circadian behavioral rhythms. Disruption of SCN neuronal activity has been reported in animal models of other neurodegenerative disorders; however, the effect of AD on SCN neurophysiology remains unknown. In this study we examined circadian behavioral and electrophysiological changes in a mouse model of AD, using male mice from the Tg-SwDI line which expresses human amyloid precursor protein with the familial Swedish (K670N/M671L), Dutch (E693Q), Iowa (D694N) mutations. The free-running period of wheel-running behavior was significantly shorter in Tg-SwDI mice compared to wild-type (WT) controls at all ages examined (3, 6, and 10 months). At the SCN level, the day/night difference in spike rate was significantly dampened in 6-8 month-old Tg-SwDI mice, with decreased AP firing during the day and an increase in neuronal activity at night. The dampening of SCN excitability rhythms in Tg-SwDI mice was not associated with changes in input resistance, resting membrane potential, or action potential afterhyperpolarization amplitude; however, SCN neurons from Tg-SwDI mice had significantly reduced A-type potassium current (IA) during the day compared to WT cells. Taken together, these results provide the first evidence of SCN neurophysiological disruption in a mouse model of AD, and highlight IA as a potential target for AD treatment strategies in the future.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Ritmo Circadiano/fisiologia , Locomoção/fisiologia , Núcleo Supraquiasmático/fisiologia , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Cultura de Órgãos
9.
Front Neuroendocrinol ; 44: 35-82, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27894927

RESUMO

Virtually every neuron within the suprachiasmatic nucleus (SCN) communicates via GABAergic signaling. The extracellular levels of GABA within the SCN are determined by a complex interaction of synthesis and transport, as well as synaptic and non-synaptic release. The response to GABA is mediated by GABAA receptors that respond to both phasic and tonic GABA release and that can produce excitatory as well as inhibitory cellular responses. GABA also influences circadian control through the exclusively inhibitory effects of GABAB receptors. Both GABA and neuropeptide signaling occur within the SCN, although the functional consequences of the interactions of these signals are not well understood. This review considers the role of GABA in the circadian pacemaker, in the mechanisms responsible for the generation of circadian rhythms, in the ability of non-photic stimuli to reset the phase of the pacemaker, and in the ability of the day-night cycle to entrain the pacemaker.


Assuntos
Relógios Biológicos/fisiologia , Ritmo Circadiano/fisiologia , Transdução de Sinais/fisiologia , Núcleo Supraquiasmático/fisiologia , Ácido gama-Aminobutírico/fisiologia , Animais , Humanos
10.
Am J Physiol Gastrointest Liver Physiol ; 314(3): G431-G447, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29191941

RESUMO

Multiple metabolic pathways exhibit time-of-day-dependent rhythms that are controlled by the molecular circadian clock. We have shown that chronic alcohol is capable of altering the molecular clock and diurnal oscillations in several elements of hepatic glycogen metabolism ( 19 , 44 ). Herein, we sought to determine whether genetic disruption of the hepatocyte clock differentially impacts hepatic glycogen content in chronic alcohol-fed mice. Male hepatocyte-specific BMAL1 knockout (HBK) and littermate controls were fed control or alcohol-containing diets for 5 wk to alter hepatic glycogen content. Glycogen displayed a significant diurnal rhythm in livers of control genotype mice fed the control diet. While rhythmic, alcohol significantly altered the diurnal oscillation of glycogen in livers of control genotype mice. The glycogen rhythm was mildly altered in livers of control-fed HBK mice. Importantly, glycogen content was arrhythmic in livers of alcohol-fed HBK mice. Consistent with these changes in hepatic glycogen content, we observed that some glycogen and glucose metabolism genes were differentially altered by chronic alcohol consumption in livers of HBK and littermate control mice. Diurnal rhythms in glycogen synthase (mRNA and protein) were significantly altered by alcohol feeding and clock disruption. Alcohol consumption significantly altered Gck, Glut2, and Ppp1r3g rhythms in livers of control genotype mice, with diurnal rhythms of Pklr, Glut2, Ppp1r3c, and Ppp1r3g further disrupted (dampened or arrhythmic) in livers of HBK mice. Taken together, these findings show that chronic alcohol consumption and hepatocyte clock disruption differentially influence the diurnal rhythm of glycogen and various key glycogen metabolism-related genes in the liver. NEW & NOTEWORTHY We report that circadian clock disruption exacerbates alcohol-mediated alterations in hepatic glycogen. We observed differential responsiveness in diurnal rhythms of glycogen and glycogen metabolism genes and proteins in livers of hepatocyte-specific BMAL1 knockout and littermate control mice fed alcohol. Our findings provide new insights into potential mechanisms by which alcohol alters glycogen, an important energy source for liver and other organs.


Assuntos
Fatores de Transcrição ARNTL/deficiência , Consumo de Bebidas Alcoólicas/metabolismo , Ritmo Circadiano , Deleção de Genes , Glicogênio/metabolismo , Hepatócitos/metabolismo , Hepatopatias Alcoólicas/metabolismo , Fígado/metabolismo , Fatores de Transcrição ARNTL/genética , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/patologia , Animais , Ritmo Circadiano/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica , Genótipo , Glucose/metabolismo , Hepatócitos/patologia , Fígado/patologia , Hepatopatias Alcoólicas/etiologia , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/patologia , Masculino , Camundongos Knockout , Fenótipo , Fatores de Tempo
11.
Biochim Biophys Acta ; 1861(10): 1579-95, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26721420

RESUMO

A mismatch between fatty acid availability and utilization leads to cellular/organ dysfunction during cardiometabolic disease states (e.g., obesity, diabetes mellitus). This can precipitate cardiac dysfunction. The heart adapts to increased fatty acid availability at transcriptional, translational, post-translational and metabolic levels, thereby attenuating cardiomyopathy development. We have previously reported that the cardiomyocyte circadian clock regulates transcriptional responsiveness of the heart to acute increases in fatty acid availability (e.g., short-term fasting). The purpose of the present study was to investigate whether the cardiomyocyte circadian clock plays a role in adaptation of the heart to chronic elevations in fatty acid availability. Fatty acid availability was increased in cardiomyocyte-specific CLOCK mutant (CCM) and wild-type (WT) littermate mice for 9weeks in time-of-day-independent (streptozotocin (STZ) induced diabetes) and dependent (high fat diet meal feeding) manners. Indices of myocardial metabolic adaptation (e.g., substrate reliance perturbations) to STZ-induced diabetes and high fat meal feeding were found to be dependent on genotype. Various transcriptional and post-translational mechanisms were investigated, revealing that Cte1 mRNA induction in the heart during STZ-induced diabetes is attenuated in CCM hearts. At the functional level, time-of-day-dependent high fat meal feeding tended to influence cardiac function to a greater extent in WT versus CCM mice. Collectively, these data suggest that CLOCK (a circadian clock component) is important for metabolic adaption of the heart to prolonged elevations in fatty acid availability. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.


Assuntos
Adaptação Fisiológica , Proteínas CLOCK/metabolismo , Ácidos Graxos/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/fisiopatologia , Dieta Hiperlipídica , Comportamento Alimentar , Masculino , Camundongos Mutantes , Contração Miocárdica , Especificidade de Órgãos , Estreptozocina
12.
Hippocampus ; 27(8): 890-898, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28556462

RESUMO

Hippocampal rhythms in clock gene expression, enzymatic activity, and long-term potentiation (LTP) are thought to underlie day-night differences in memory acquisition and recall. Glycogen synthase kinase 3-beta (GSK3ß) is a known regulator of hippocampal function, and inhibitory phosphorylation of GSK3ß exhibits region-specific differences over the light-dark cycle. Here, we sought to determine whether phosphorylation of both GSK3α and GSK3ß isoforms has an endogenous circadian rhythm in specific areas of the hippocampus and whether chronic inhibition or activation alters the molecular clock and hippocampal plasticity (LTP). Results indicated a significant endogenous circadian rhythm in phosphorylation of GSK3ß, but not GSK3α, in hippocampal CA1 extracts from mice housed in constant darkness for at least 2 weeks. To examine the importance of this rhythm, genetic and pharmacological strategies were used to disrupt the GSK3 activity rhythm by chronically activating or inhibiting GSK3. Chronic activation of both GSK3 isoforms in transgenic mice (GSK3-KI mice) diminished rhythmic BMAL1 expression. On the other hand, chronic treatment with a GSK3 inhibitor significantly shortened the molecular clock period of organotypic hippocampal PER2::LUC cultures. While WT mice exhibited higher LTP magnitude at night compared to day, the day-night difference in LTP magnitude remained with greater magnitude at both times of day in mice with chronic GSK3 activity. On the other hand, pharmacological GSK3 inhibition impaired day-night differences in LTP by blocking LTP selectively at night. Taken together, these results support the model that circadian rhythmicity of hippocampal GSK3ß activation state regulates day/night differences in molecular clock periodicity and a major form of synaptic plasticity (LTP).


Assuntos
Ritmo Circadiano/fisiologia , Regulação da Expressão Gênica/fisiologia , Quinase 3 da Glicogênio Sintase/metabolismo , Hipocampo/fisiologia , Plasticidade Neuronal/fisiologia , Proteínas Circadianas Period/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/genética , Inibidores Enzimáticos/farmacologia , Quinase 3 da Glicogênio Sintase/genética , Hipocampo/efeitos dos fármacos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/genética , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Proteínas Circadianas Period/genética , Fosforilação , Piridinas/farmacologia , Pirimidinas/farmacologia , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
13.
Eur J Neurosci ; 45(8): 1102-1110, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28244152

RESUMO

Glycogen synthase kinase 3 (GSK3) is a serine-threonine kinase that regulates mammalian circadian rhythms at the behavioral, molecular and neurophysiological levels. In the central circadian pacemaker, the suprachiasmatic nucleus (SCN), inhibitory phosphorylation of GSK3 exhibits a rhythm across the 24 h day. We have recently shown that GSK3 is capable of influencing both the molecular clock and SCN neuronal activity rhythms. However, it is not known whether GSK3 regulates the response to environmental cues such as light. The goal of this study was to test the hypothesis that GSK3 activation mediates light-induced SCN excitability and photic entrainment. Immunofluorescence staining in the SCN of mice showed that late-night light exposure significantly increased GSK3 activity (decreased pGSK3ß levels) 30-60 min after the light-pulse. In addition, pharmacological inhibition of GSK3 blocked the expected light-induced excitability in SCN neurons; however, this effect was not associated with changes in resting membrane potential or input resistance. Behaviorally, mice with constitutively active GSK3 (GSK3-KI) re-entrained to a 6-h phase advance in the light-dark cycle in significantly fewer days than WT control animals. Furthermore, the behavioral and SCN neuronal activity of GSK3-KI mice was phase-advanced compared to WT, in both normal and light-exposed conditions. Finally, GSK3-KI mice exhibited normal negative-masking behavior and electroretinographic responses to light, suggesting that the enhanced photic entrainment is not due to an overall increased sensitivity to light in these animals. Taken together, these results provide strong evidence that GSK3 activation contributes to light-induced phase-resetting at both the neurophysiological and behavioral levels.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Quinase 3 da Glicogênio Sintase/metabolismo , Transdução de Sinal Luminoso/fisiologia , Neurônios/enzimologia , Núcleo Supraquiasmático/enzimologia , Potenciais de Ação/fisiologia , Adaptação Fisiológica/fisiologia , Animais , Feminino , Quinase 3 da Glicogênio Sintase/genética , Luz , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/fisiologia , Fotoperíodo , Retina/fisiologia , Técnicas de Cultura de Tecidos
14.
J Neurosci ; 35(45): 14957-65, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26558769

RESUMO

Melatonin supplementation has been used as a therapeutic agent for several diseases, yet little is known about the underlying mechanisms by which melatonin synchronizes circadian rhythms. G-protein signaling plays a large role in melatonin-induced phase shifts of locomotor behavior and melatonin receptors activate G-protein-coupled inwardly rectifying potassium (GIRK) channels in Xenopus oocytes. The present study tested the hypothesis that melatonin influences circadian phase and electrical activity within the central clock in the suprachiasmatic nucleus (SCN) through GIRK channel activation. Unlike wild-type littermates, GIRK2 knock-out (KO) mice failed to phase advance wheel-running behavior in response to 3 d subcutaneous injections of melatonin in the late day. Moreover, in vitro phase resetting of the SCN circadian clock by melatonin was blocked by coadministration of a GIRK channel antagonist tertiapin-q (TPQ). Loose-patch electrophysiological recordings of SCN neurons revealed a significant reduction in the average action potential rate in response to melatonin. This effect was lost in SCN slices treated with TPQ and SCN slices from GIRK2 KO mice. The melatonin-induced suppression of firing rate corresponded with an increased inward current that was blocked by TPQ. Finally, application of ramelteon, a potent melatonin receptor agonist, significantly decreased firing rate and increased inward current within SCN neurons in a GIRK-dependent manner. These results are the first to show that GIRK channels are necessary for the effects of melatonin and ramelteon within the SCN. This study suggests that GIRK channels may be an alternative therapeutic target for diseases with evidence of circadian disruption, including aberrant melatonin signaling. SIGNIFICANCE STATEMENT: Despite the widespread use of melatonin supplementation for the treatment of sleep disruption and other neurological diseases such as epilepsy and depression, no studies have elucidated the molecular mechanisms linking melatonin-induced changes in neuronal activity to its therapeutic effects. Here, we used behavioral and electrophysiological techniques to address this scientific gap. Our results show that melatonin and ramelteon, a potent and clinically relevant melatonin receptor agonist, significantly affect the neurophysiological function of suprachiasmatic nucleus neurons through activation of G-protein-coupled inwardly rectifying potassium (GIRK) channels. Given the importance of GIRK channels for neuronal excitability (with >600 publications on these channels to date), our study should generate broad interest from neuroscientists in fields such as epilepsy, addiction, and cognition.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/fisiologia , Melatonina/farmacologia , Núcleo Supraquiasmático/fisiologia , Animais , Venenos de Abelha/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/agonistas , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/antagonistas & inibidores , Indenos/farmacologia , Masculino , Melatonina/agonistas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Cultura de Órgãos , Bloqueadores dos Canais de Potássio/farmacologia , Núcleo Supraquiasmático/efeitos dos fármacos
15.
Crit Rev Biochem Mol Biol ; 48(4): 317-31, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23594144

RESUMO

Circadian rhythms are an integral part of life. These rhythms are apparent in virtually all biological processes studies to date, ranging from the individual cell (e.g. DNA synthesis) to the whole organism (e.g. behaviors such as physical activity). Oscillations in metabolism have been characterized extensively in various organisms, including mammals. These metabolic rhythms often parallel behaviors such as sleep/wake and fasting/feeding cycles that occur on a daily basis. What has become increasingly clear over the past several decades is that many metabolic oscillations are driven by cell-autonomous circadian clocks, which orchestrate metabolic processes in a temporally appropriate manner. During the process of identifying the mechanisms by which clocks influence metabolism, molecular-based studies have revealed that metabolism should be considered an integral circadian clock component. The implications of such an interrelationship include the establishment of a vicious cycle during cardiometabolic disease states, wherein metabolism-induced perturbations in the circadian clock exacerbate metabolic dysfunction. The purpose of this review is therefore to highlight recent insights gained regarding links between cell-autonomous circadian clocks and metabolism and the implications of clock dysfunction in the pathogenesis of cardiometabolic diseases.


Assuntos
Ritmo Circadiano/fisiologia , Animais , Metabolismo Energético/fisiologia , Homeostase/fisiologia , Humanos , Mamíferos/fisiologia
16.
J Lipid Res ; 56(2): 227-40, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25514904

RESUMO

Hepatic lipid metabolism is controlled by integrated metabolic pathways. Excess accumulation of hepatic TG is a hallmark of nonalcoholic fatty liver disease, which is associated with obesity and insulin resistance. Here, we show that KH-type splicing regulatory protein (KSRP) ablation reduces hepatic TG levels and diet-induced hepatosteatosis. Expression of period 2 (Per2) is increased during the dark period, and circadian oscillations of several core clock genes are altered with a delayed phase in Ksrp(-/-) livers. Diurnal expression of some lipid metabolism genes is also disturbed with reduced expression of genes involved in de novo lipogenesis. Using primary hepatocytes, we demonstrate that KSRP promotes decay of Per2 mRNA through an RNA-protein interaction and show that increased Per2 expression is responsible for the phase delay in cycling of several clock genes in the absence of KSRP. Similar to Ksrp(-/-) livers, both expression of lipogenic genes and intracellular TG levels are also reduced in Ksrp(-/-) hepatocytes due to increased Per2 expression. Using heterologous mRNA reporters, we show that the AU-rich element-containing 3' untranslated region of Per2 is responsible for KSRP-dependent mRNA decay. These findings implicate that KSRP is an important regulator of circadian expression of lipid metabolism genes in the liver likely through controlling Per2 mRNA stability.


Assuntos
Regulação da Expressão Gênica/genética , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transativadores/metabolismo , Animais , Células Cultivadas , Ingestão de Alimentos/genética , Ingestão de Alimentos/fisiologia , Hepatócitos/metabolismo , Imunoprecipitação , Masculino , Camundongos , Camundongos Knockout , Proteínas de Ligação a RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Ribonucleoproteínas/metabolismo , Transativadores/genética
17.
Eur J Neurosci ; 51(12): 2314-2328, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31814204

Assuntos
Ritmo Circadiano
18.
Am J Physiol Gastrointest Liver Physiol ; 308(11): G964-74, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25857999

RESUMO

Chronic ethanol consumption has been shown to significantly decrease hepatic glycogen content; however, the mechanisms responsible for this adverse metabolic effect are unknown. In this study, we examined the impact chronic ethanol consumption has on time-of-day-dependent oscillations (rhythms) in glycogen metabolism processes in the liver. For this, male C57BL/6J mice were fed either a control or ethanol-containing liquid diet for 5 wk, and livers were collected every 4 h for 24 h and analyzed for changes in various genes and proteins involved in hepatic glycogen metabolism. Glycogen displayed a robust diurnal rhythm in the livers of mice fed the control diet, with the peak occurring during the active (dark) period of the day. The diurnal glycogen rhythm was significantly altered in livers of ethanol-fed mice, with the glycogen peak shifted into the inactive (light) period and the overall content of glycogen decreased compared with controls. Chronic ethanol consumption further disrupted diurnal rhythms in gene expression (glycogen synthase 1 and 2, glycogenin, glucokinase, protein targeting to glycogen, and pyruvate kinase), total and phosphorylated glycogen synthase protein, and enzyme activities of glycogen synthase and glycogen phosphorylase, the rate-limiting enzymes of glycogen metabolism. In summary, these results show for the first time that chronic ethanol consumption disrupts diurnal rhythms in hepatic glycogen metabolism at the gene and protein level. Chronic ethanol-induced disruption in these daily rhythms likely contributes to glycogen depletion and disruption of hepatic energy homeostasis, a recognized risk factor in the etiology of alcoholic liver disease.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Ritmo Circadiano , Etanol/efeitos adversos , Glicogênio Hepático/metabolismo , Animais , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/fisiologia , Dieta , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Expressão Gênica/efeitos dos fármacos , Glucoquinase/genética , Glucoquinase/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Glicogênio Fosforilase Hepática , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Tempo
19.
J Pediatr ; 166(1): 109-14, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25444002

RESUMO

OBJECTIVES: To evaluate pedestrian behavior, including reaction time, impulsivity, risk-taking, attention, and decision-making, in children with obstructive sleep apnea syndrome (OSAS) compared with healthy controls. STUDY DESIGN: Using a case control design, 8- to 16-year-olds (n = 60) with newly diagnosed and untreated OSAS engaged in a virtual reality pedestrian environment. Sixty-one healthy children matched using a yoke-control procedure by age, race, sex, and household income served as controls. RESULTS: Children with OSAS were riskier pedestrians than healthy children of the same age, race, and sex. Children with OSAS waited less time to cross (P < .01). The groups did not differ in looking at oncoming traffic or taking longer to decide to cross. CONCLUSIONS: Results suggest OSAS may have significant consequences on children's daytime functioning in a critical domain of personal safety, pedestrian skills. Children with OSAS appeared to have greater impulsivity when crossing streets. Results highlight the need for heightened awareness of the consequences of untreated sleep disorders and identify a possible target for pediatric injury prevention.


Assuntos
Acidentes de Trânsito/estatística & dados numéricos , Tomada de Decisões , Assunção de Riscos , Apneia Obstrutiva do Sono/complicações , Adolescente , Estudos de Casos e Controles , Criança , Simulação por Computador , Feminino , Humanos , Masculino , Tempo de Reação , Caminhada
20.
Hum Mol Genet ; 21(18): 3984-92, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22678064

RESUMO

Restless legs syndrome (RLS), also known as Willis-Ekbom disease, is a sensory-motor neurological disorder with a circadian component. RLS is characterized by uncomfortable sensations in the extremities, generally at night or during sleep, which often leads to an uncontrollable urge to move them for relief. Recently, genomic studies identified single-nucleotide polymorphisms in BTBD9, along with three other genes, as being associated with a higher risk of RLS. Little is known about the function of BTBD9 or its potential role in the pathophysiology of RLS. We therefore examined a line of Btbd9 mutant mice we recently generated for phenotypes similar to symptoms found in RLS patients. We observed that the Btbd9 mutant mice had motor restlessness, sensory alterations likely limited to the rest phase, and decreased sleep and increased wake times during the rest phase. Additionally, the Btbd9 mutant mice had altered serum iron levels and monoamine neurotransmitter systems. Furthermore, the sensory alterations in the Btbd9 mutant mice were relieved using ropinirole, a dopaminergic agonist widely used for RLS treatment. These results, taken together, suggest that the Btbd9 mutant mice model several characteristics similar to RLS and would therefore be the first genotypic mouse model of RLS. Furthermore, our data provide further evidence that BTBD9 is involved in RLS, and future studies of the Btbd9 mutant mice will help shine light on its role in the pathophysiology of RLS. Finally, our data argue for the utility of Btbd9 mutant mice to discover and screen novel therapeutics for RLS.


Assuntos
Proteínas de Transporte/genética , Ferro/sangue , Proteínas do Tecido Nervoso/genética , Síndrome das Pernas Inquietas/genética , Transtornos do Sono-Vigília/genética , Distúrbios Somatossensoriais/genética , Animais , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Estudos de Associação Genética , Homozigoto , Masculino , Camundongos , Camundongos Transgênicos , Atividade Motora/genética , Mutação , Fotoperíodo , Polissonografia , Síndrome das Pernas Inquietas/sangue , Neurônios Serotoninérgicos/metabolismo , Serotonina/metabolismo , Transtornos do Sono-Vigília/sangue , Distúrbios Somatossensoriais/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA