Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Viruses ; 16(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38400002

RESUMO

In Chile, edible herbs are mainly grown by small farmers. This type of horticultural crop typically requires intensive management because it is highly susceptible to insects, some of which transmit viruses that severely affect crop yield and quality. In 2019, in coriander plants tested negative for all previously reported viruses, RNA-Seq analysis of one symptomatic plant revealed a plethora of viruses, including one virus known to infect coriander, five viruses never reported in coriander, and a new cytorhabdovirus with a 14,180 nucleotide RNA genome for which the species name Cytorhabdovirus coriandrum was proposed. Since all the detected viruses were aphid-borne, aphids and weeds commonly growing around the coriander field were screened for viruses. The results showed the occurrence of the same seven viruses and the alfalfa mosaic virus, another aphid-borne virus, in aphids and weeds. Together, our findings document the presence of multiple viruses in coriander and the potential role of weeds as virus reservoirs for aphid acquisition.


Assuntos
Afídeos , Coriandrum , Vírus de Plantas , Vírus , Animais , Chile/epidemiologia , Plantas , Doenças das Plantas , Vírus de Plantas/genética
2.
Pathogens ; 11(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35055996

RESUMO

The considerable economic losses in citrus associated with 'Candidatus Liberibacter' and 'Candidatus Phytoplasma' presence have alerted all producing regions of the world. In Chile, none of these bacteria have been reported in citrus species. During the years 2017 and 2019, 258 samples presenting symptoms similar to those associated with the presence of these bacteria were examined. No detection of 'Ca. Liberibacter' associated with "huanglongbing" disease was obtained in the tested samples; therefore, this quarantine pest is maintained as absent in Chile. However, 14 plants resulted positive for phytoplasmas enclosed in subgroups 16SrV-A (12 plants) and 16SrXIII-F (2 plants). Although they have been found in other plant species, this is the first report of these phytoplasmas in citrus worldwide.

3.
Pathogens ; 9(11)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187106

RESUMO

To date, phytoplasmas belonging to six ribosomal subgroups have been detected to infect grapevines in Chile in 36 percent of the sampled plants. A new survey on the presence of grapevine yellows was carried out from 2016 to 2020, and 330 grapevine plants from the most important wine regions of the country were sampled and analyzed by nested PCR/RFLP analyses. Phytoplasmas enclosed in subgroups 16SrIII-J and 16SrVII-A were identified with infection rates of 17% and 2%, respectively. The vineyards in which the phytoplasma-infected plants were detected were further inspected to identify alternative host plants and insects of potential epidemiological relevance. Five previously unreported plant species resulted positive for 16SrIII-J phytoplasma (Rosa spp., Brassica rapa, Erodium spp., Malva spp. and Rubus ulmifolius) and five insect species were fully or partially identified (Amplicephalus ornatus, A. pallidus, A. curtulus, Bergallia sp., Exitianus obscurinervis) as potential vectors of 16SrIII-J phytoplasmas. The 16SrVII-A phytoplasmas were not detected in non-grape plant species nor in insects. This work establishes updated guidelines for the study, management, and prevention of grapevine yellows in Chile, and in other grapevine growing regions of South America.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA