Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ther ; 31(12): 3441-3456, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37814449

RESUMO

Adeno-associated virus (AAV) continues to be the gold standard vector for therapeutic gene delivery and has proven especially useful for treating ocular disease. Intravitreal injection (IVtI) is a promising delivery route because it increases accessibility of gene therapies to larger patient populations. However, data from clinical and non-human primate (NHP) studies utilizing currently available capsids indicate that anatomical barriers to AAV and pre-existing neutralizing antibodies can restrict gene expression to levels that are "sub-therapeutic" in a substantial proportion of patients. Here, we performed a combination of directed evolution in NHPs of an AAV2-based capsid library with simultaneous mutations across six surface-exposed variable regions and rational design to identify novel capsid variants with improved retinal transduction following IVtI. Following two rounds of screening in NHP, enriched variants were characterized in intravitreally injected mice and NHPs and shown to have increased transduction relative to AAV2. Lead capsid variant, P2-V1, demonstrated an increased ability to evade neutralizing antibodies in human vitreous samples relative to AAV2 and AAV2.7m8. Taken together, this study further contributed to our understanding of the selective pressures associated with retinal transduction via the vitreous and identified promising novel AAV capsid variants for clinical consideration.


Assuntos
Anticorpos Neutralizantes , Capsídeo , Humanos , Camundongos , Animais , Dependovirus , Injeções Intravítreas , Transdução Genética , Primatas/genética , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Vetores Genéticos/genética
2.
Proc Natl Acad Sci U S A ; 117(46): 29123-29132, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33139553

RESUMO

During normal viewing, we direct our eyes between objects in three-dimensional (3D) space many times a minute. To accurately fixate these objects, which are usually located in different directions and at different distances, we must generate eye movements with appropriate versional and vergence components. These combined saccade-vergence eye movements result in disjunctive saccades with a vergence component that is much faster than that generated during smooth, symmetric vergence eye movements. The neural control of disjunctive saccades is still poorly understood. Recent anatomical studies suggested that the central mesencephalic reticular formation (cMRF), located lateral to the oculomotor nucleus, contains premotor neurons potentially involved in the neural control of these eye movements. We have therefore investigated the role of the cMRF in the control of disjunctive saccades in trained rhesus monkeys. Here, we describe a unique population of cMRF neurons that, during disjunctive saccades, display a burst of spikes that are highly correlated with vergence velocity. Importantly, these neurons show no increase in activity for either conjugate saccades or symmetric vergence. These neurons are termed saccade-vergence burst neurons (SVBNs) to maintain consistency with modeling studies that proposed that such a class of neuron exists to generate the enhanced vergence velocities observed during disjunctive saccades. Our results demonstrate the existence and characteristics of SVBNs whose activity is correlated solely with the vergence component of disjunctive saccades and, based on modeling studies, are critically involved in the generation of the disjunctive saccades required to view objects in our 3D world.


Assuntos
Movimentos Oculares/fisiologia , Neurônios/fisiologia , Movimentos Sacádicos/fisiologia , Visão Binocular/fisiologia , Animais , Macaca mulatta , Masculino , Formação Reticular Mesencefálica/patologia , Visão Ocular
3.
Mol Ther ; 29(9): 2806-2820, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34298128

RESUMO

Non-human primates (NHPs) are a preferred animal model for optimizing adeno-associated virus (AAV)-mediated CNS gene delivery protocols before clinical trials. In spite of its inherent appeal, it is challenging to compare different serotypes, delivery routes, and disease indications in a well-powered, comprehensive, multigroup NHP experiment. Here, a multiplex barcode recombinant AAV (rAAV) vector-tracing strategy has been applied to a systemic analysis of 29 distinct, wild-type (WT), AAV natural isolates and engineered capsids in the CNS of eight macaques. The report describes distribution of each capsid in 15 areas of the macaques' CNS after intraparenchymal (putamen) injection, or cerebrospinal fluid (CSF)-mediated administration routes (intracisternal, intrathecal, or intracerebroventricular). To trace the vector biodistribution (viral DNA) and targeted tissues transduction (viral mRNA) of each capsid in each of the analyzed CNS areas, quantitative next-generation sequencing analysis, assisted by the digital-droplet PCR technology, was used. The report describes the most efficient AAV capsid variants targeting specific CNS areas after each route of administration using the direct side-by-side comparison of WT AAV isolates and a new generation of rationally designed capsids. The newly developed bioinformatics and visualization algorithms, applicable to the comparative analysis of several mammalian brain models, have been developed and made available in the public domain.


Assuntos
Proteínas do Capsídeo/genética , Sistema Nervoso Central/química , Dependovirus/fisiologia , Vetores Genéticos/administração & dosagem , Algoritmos , Animais , Sistema Nervoso Central/virologia , DNA Viral/genética , Bases de Dados Genéticas , Dependovirus/genética , Vias de Administração de Medicamentos , Sequenciamento de Nucleotídeos em Larga Escala , Primatas , RNA Mensageiro/genética , RNA Viral/genética , Distribuição Tecidual , Transdução Genética
4.
Vis Neurosci ; 38: E007, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33977889

RESUMO

Since most gaze shifts are to targets that lie at a different distance from the viewer than the current target, gaze changes commonly require a change in the angle between the eyes. As part of this response, lens curvature must also be adjusted with respect to target distance by the ciliary muscle. It has been suggested that projections by the cerebellar fastigial and posterior interposed nuclei to the supraoculomotor area (SOA), which lies immediately dorsal to the oculomotor nucleus and contains near response neurons, support this behavior. However, the SOA also contains motoneurons that supply multiply innervated muscle fibers (MIFs) and the dendrites of levator palpebrae superioris motoneurons. To better determine the targets of the fastigial nucleus in the SOA, we placed an anterograde tracer into this cerebellar nucleus in Macaca fascicularis monkeys and a retrograde tracer into their contralateral medial rectus, superior rectus, and levator palpebrae muscles. We only observed close associations between anterogradely labeled boutons and the dendrites of medial rectus MIF and levator palpebrae motoneurons. However, relatively few of these associations were present, suggesting these are not the main cerebellar targets. In contrast, labeled boutons in SOA, and in the adjacent central mesencephalic reticular formation (cMRF), densely innervated a subpopulation of neurons. Based on their location, these cells may represent premotor near response neurons that supply medial rectus and preganglionic Edinger-Westphal motoneurons. We also identified lens accommodation-related cerebellar afferent neurons via retrograde trans-synaptic transport of the N2c rabies virus from the ciliary muscle. They were found bilaterally in the fastigial and posterior interposed nuclei, in a distribution which mirrored that of neurons retrogradely labeled from the SOA and cMRF. Our results suggest these cerebellar neurons coordinate elements of the near response during symmetric vergence and disjunctive saccades by targeting cMRF and SOA premotor neurons.


Assuntos
Neurônios Motores , Músculos Oculomotores , Animais , Macaca fascicularis , Tegmento Mesencefálico
5.
Mol Ther ; 28(2): 411-421, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31813800

RESUMO

Global gene delivery to the CNS has therapeutic importance for the treatment of neurological disorders that affect the entire CNS. Due to direct contact with the CNS, cerebrospinal fluid (CSF) is an attractive route for CNS gene delivery. A safe and effective route to achieve global gene distribution in the CNS is needed, and administration of genes through the cisterna magna (CM) via a suboccipital puncture results in broad distribution in the brain and spinal cord. However, translation of this technique to clinical practice is challenging due to the risk of serious and potentially fatal complications in patients. Herein, we report development of a gene therapy delivery method to the CM through adaptation of an intravascular microcatheter, which can be safely navigated intrathecally under fluoroscopic guidance. We examined the safety, reproducibility, and distribution/transduction of this method in sheep using a self-complementary adeno-associated virus 9 (scAAV9)-GFP vector. This technique was used to treat two Tay-Sachs disease patients (30 months old and 7 months old) with AAV gene therapy. No adverse effects were observed during infusion or post-treatment. This delivery technique is a safe and minimally invasive alternative to direct infusion into the CM, achieving broad distribution of AAV gene transfer to the CNS.


Assuntos
Cisterna Magna/metabolismo , Dependovirus/genética , Expressão Gênica , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Transdução Genética , Animais , Catéteres , Sistema Nervoso Central/metabolismo , Genes Reporter , Terapia Genética , Vetores Genéticos/administração & dosagem , Humanos , Injeções Espinhais , Imageamento por Ressonância Magnética , Modelos Animais , Ovinos , Cirurgia Assistida por Computador , Tomografia Computadorizada por Raios X , Transgenes , Gravação em Vídeo
6.
J Neurophysiol ; 121(5): 1692-1703, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30840529

RESUMO

To view a nearby target, the three components of the near response are brought into play: 1) the eyes are converged through contraction of the medial rectus muscles to direct both foveae at the target, 2) the ciliary muscle contracts to allow the lens to thicken, increasing its refractive power to focus the near target on the retina, and 3) the pupil constricts to increase depth of field. In this study, we utilized retrograde transsynaptic transport of the N2c strain of rabies virus injected into the ciliary body of one eye of macaque monkeys to identify premotor neurons that control lens accommodation. We previously used this approach to label a premotor population located in the supraoculomotor area. In the present report, we describe a set of neurons located bilaterally in the central mesencephalic reticular formation that are labeled in the same time frame as the supraoculomotor area population, indicating their premotor character. The labeled premotor neurons are mostly multipolar cells, with long, very sparsely branched dendrites. They form a band that stretches across the core of the midbrain reticular formation. This population appears to be continuous with the premotor near-response neurons located in the supraoculomotor area at the level of the caudal central subdivision of the oculomotor nucleus. The central mesencephalic reticular formation has previously been associated with horizontal saccadic eye movements, so these premotor cells might be involved in controlling lens accommodation during disjunctive saccades. Alternatively, they may represent a population that controls vergence velocity. NEW & NOTEWORTHY This report uses transsynaptic transport of rabies virus to provide new evidence that the central mesencephalic reticular formation (cMRF) contains premotor neurons controlling lens accommodation. When combined with other recent reports that the cMRF also contains premotor neurons supplying medial rectus motoneurons, these results indicate that this portion of the reticular formation plays an important role in directing the near response and disjunctive saccades when viewers look between targets located at different distances.


Assuntos
Acomodação Ocular , Formação Reticular/citologia , Animais , Dendritos/fisiologia , Vias Eferentes/citologia , Vias Eferentes/fisiologia , Macaca fascicularis , Neurônios Motores/citologia , Neurônios Motores/fisiologia , Técnicas de Rastreamento Neuroanatômico/métodos , Formação Reticular/fisiologia
7.
Mol Ther ; 25(8): 1866-1880, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28566226

RESUMO

X-linked retinitis pigmentosa (XLRP) caused by mutations in the RPGR gene is an early onset and severe cause of blindness. Successful proof-of-concept studies in a canine model have recently shown that development of a corrective gene therapy for RPGR-XLRP may now be an attainable goal. In preparation for a future clinical trial, we have here optimized the therapeutic AAV vector construct by showing that GRK1 (rather than IRBP) is a more efficient promoter for targeting gene expression to both rods and cones in non-human primates. Two transgenes were used in RPGR mutant (XLPRA2) dogs under the control of the GRK1 promoter. First was the previously developed stabilized human RPGR (hRPGRstb). Second was a new full-length stabilized and codon-optimized human RPGR (hRPGRco). Long-term (>2 years) studies with an AAV2/5 vector carrying hRPGRstb under control of the GRK1 promoter showed rescue of rods and cones from degeneration and retention of vision. Shorter term (3 months) studies demonstrated comparable preservation of photoreceptors in canine eyes treated with an AAV2/5 vector carrying either transgene under the control of the GRK1 promoter. These results provide the critical molecular components (GRK1 promoter, hRPGRco transgene) to now construct a therapeutic viral vector optimized for RPGR-XLRP patients.


Assuntos
Proteínas de Transporte/genética , Proteínas do Olho/genética , Genes Ligados ao Cromossomo X , Terapia Genética , Mutação , Retina/metabolismo , Retinose Pigmentar/genética , Animais , Dependovirus/genética , Modelos Animais de Doenças , Cães , Receptor Quinase 1 Acoplada a Proteína G/genética , Expressão Gênica , Ordem dos Genes , Genes Reporter , Vetores Genéticos/genética , Humanos , Fenótipo , Células Fotorreceptoras de Vertebrados/metabolismo , Primatas , Regiões Promotoras Genéticas , Retinose Pigmentar/diagnóstico , Retinose Pigmentar/terapia , Transdução Genética , Transgenes , Testes Visuais
8.
J Neurosci ; 35(19): 7428-42, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25972171

RESUMO

It is currently thought that the primate oculomotor system has evolved distinct but interrelated subsystems to generate different types of visually guided eye movements (e.g., saccades/smooth pursuit/vergence). Although progress has been made in elucidating the neural basis of these movement types, no study to date has investigated all three movement types on a large scale and within the same animals. Here, we used fMRI in rhesus macaque monkeys to map the superior temporal sulcus (STS) for BOLD modulation associated with visually guided eye movements. Further, we ascertained whether modulation in a given area was movement type specific and, if not, the modulation each movement type elicited relative to the others (i.e., dominance). Our results show that multiple areas within STS modulate during all movement types studied, including the middle temporal, medial superior temporal, fundus of the superior temporal, lower superior temporal, and dorsal posterior inferotemporal areas. Our results also reveal an area in dorsomedial STS that is modulated almost exclusively by vergence movements. In contrast, we found that ventrolateral STS is driven preferentially during versional movements. These results illuminate an STS network involved in processes associated with multiple eye movement types, illustrate unique patterns of modulation within said network as a function of movement type, and provide evidence for a vergence-specific area within dorsomedial STS. We conclude that producing categorically different eye movement types requires access to a common STS network and that individual network nodes are recruited differentially based upon the type of movement generated.


Assuntos
Mapeamento Encefálico , Movimentos Oculares/fisiologia , Lobo Temporal/fisiologia , Campos Visuais/fisiologia , Vias Visuais/fisiologia , Animais , Processamento de Imagem Assistida por Computador , Macaca mulatta , Imageamento por Ressonância Magnética , Masculino , Oxigênio/sangue , Estimulação Luminosa , Lobo Temporal/irrigação sanguínea , Vias Visuais/irrigação sanguínea
9.
Sleep ; 47(9)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-38877879

RESUMO

To isolate melanopsin contributions to retinal sensitivity measured by the post-illumination pupil response (PIPR), controlling for individual differences in non-melanopsin contributions including retinal irradiance is required. When methodologies to negate such differences present barriers, statistical controls have included age, baseline diameter, iris pigmentation, and circadian time of testing. Alternatively, the pupil light reflex (PLR) and calculations estimating retinal irradiance both reflect retinal irradiance, while the PLR also reflects downstream pathways. We reanalyzed data from an observational, correlational study comparing the PIPR across seasons in seasonal affective disorder (SAD) and controls. The PIPR was measured in 47 adults in Pittsburgh, Pennsylvania (25 SAD) over 50 seconds after 1 second of red and blue stimuli of 15.3 log photons/cm2/s. The PLR was within 1 second while PIPR was averaged over 10-40 seconds post-stimulus. Two raters ranked iris pigmentation using a published scale. We evaluated model fit using Akaike's Information Criterion (AIC) across different covariate sets. The best-fitting models included either estimated retinal irradiance or PLR, and circadian time of testing. The PLR is collected contemporaneously in PIPR studies and is an individually specific measure of nonspecific effects, while being minimally burdensome. This work extends the prior publication by introducing theoretically grounded covariates that improved analytic model fits based on AIC specific to the present methods and sample. Such quantitative methods could be helpful in studies which must balance participant and researcher burden against tighter methodological controls of individual differences in retinal irradiance.


Assuntos
Reflexo Pupilar , Retina , Opsinas de Bastonetes , Transtorno Afetivo Sazonal , Humanos , Opsinas de Bastonetes/fisiologia , Masculino , Feminino , Reflexo Pupilar/fisiologia , Transtorno Afetivo Sazonal/fisiopatologia , Adulto , Retina/fisiopatologia , Pessoa de Meia-Idade , Pupila/fisiologia , Luz , Estimulação Luminosa/métodos
10.
Res Sq ; 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38045237

RESUMO

Background: Behavioral, social, and physical characteristics are posited to distinguish the sexes, yet research on transcription-level sexual differences in the brain is limited. Here, we investigated sexually divergent brain transcriptomics in prepubertal cynomolgus macaques, a commonly used surrogate species to humans. Methods: A transcriptomic profile using RNA sequencing was generated for the temporal lobe, ventral midbrain, and cerebellum of 3 female and 3 male cynomolgus macaques previously treated with an Adeno-associated virus vector mix. Statistical analyses to determine differentially expressed protein-coding genes in all three lobes were conducted using DeSeq2 with a false discovery rate corrected P value of .05. Results: We identified target genes in the temporal lobe, ventral midbrain, and cerebellum with functions in translation, immunity, behavior, and neurological disorders that exhibited statistically significant sexually divergent expression. Conclusions: We provide potential mechanistic insights to the epidemiological differences observed between the sexes with regards to mental health and infectious diseases, such as COVID19. Our results provide pre-pubertal information on sexual differences in non-human primate brain transcriptomics and may provide insight to health disparities between the biological sexes in humans.

11.
Science ; 379(6630): 376-381, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36701440

RESUMO

Light regulates physiology, mood, and behavior through signals sent to the brain by intrinsically photosensitive retinal ganglion cells (ipRGCs). How primate ipRGCs sense light is unclear, as they are rare and challenging to target for electrophysiological recording. We developed a method of acute identification within the live, ex vivo retina. Using it, we found that ipRGCs of the macaque monkey are highly specialized to encode irradiance (the overall intensity of illumination) by blurring spatial, temporal, and chromatic features of the visual scene. We describe mechanisms at the molecular, cellular, and population scales that support irradiance encoding across orders-of-magnitude changes in light intensity. These mechanisms are conserved quantitatively across the ~70 million years of evolution that separate macaques from mice.


Assuntos
Evolução Biológica , Iluminação , Células Ganglionares da Retina , Animais , Camundongos , Luz , Células Ganglionares da Retina/fisiologia , Macaca
12.
Invest Ophthalmol Vis Sci ; 63(1): 35, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-35084433

RESUMO

Purpose: Under real-world conditions, saccades are often accompanied by changes in vergence angle and lens accommodation that compensate for changes in the distance between the current fixation point and the next target. As the superior colliculus directs saccades, we examined whether it contains premotor neurons that might control lens compensation for target distance. Methods: Rabies virus or recombinant rabies virus was injected into the ciliary bodies of Macaca fascicularis monkeys to label circuits controlling lens accommodation via retrograde transsynaptic transport. In addition, conventional anterograde tracers were used to confirm the rabies findings with respect to projections to preganglionic Edinger-Westphal motoneurons. Results: At time courses that rabies virus labeled lens-related premotor neurons in the supraoculomotor area and central mesencephalic reticular formation, labeled neurons were not found within the superior colliculus. They were, however, found bilaterally in the medial pretectal nucleus continuing caudally into the tectal longitudinal column, which lies on the midline, between the colliculi. A bilateral projection by this area to the preganglionic Edinger-Westphal nucleus was confirmed by anterograde tracing. Only at longer time courses were cells labeled in the superior colliculus. Conclusions: The superior colliculus does not provide premotor input to preganglionic Edinger-Westphal nucleus motoneurons, but may provide input to lens-related premotor populations in the supraoculomotor area and central mesencephalic reticular formation. There is, however, a novel third population of lens-related premotor neurons in the tectal longitudinal column and rostrally adjacent medial pretectal nucleus. The specific function of this premotor population remains to be determined.


Assuntos
Acomodação Ocular/fisiologia , Núcleo de Edinger-Westphal/fisiologia , Animais , Feminino , Macaca fascicularis , Masculino , Modelos Animais , Neurônios Motores/fisiologia , Vias Neurais
13.
Nat Commun ; 13(1): 2862, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606344

RESUMO

From mouse to primate, there is a striking discontinuity in our current understanding of the neural coding of motion direction. In non-primate mammals, directionally selective cell types and circuits are a signature feature of the retina, situated at the earliest stage of the visual process. In primates, by contrast, direction selectivity is a hallmark of motion processing areas in visual cortex, but has not been found in the retina, despite significant effort. Here we combined functional recordings of light-evoked responses and connectomic reconstruction to identify diverse direction-selective cell types in the macaque monkey retina with distinctive physiological properties and synaptic motifs. This circuitry includes an ON-OFF ganglion cell type, a spiking, ON-OFF polyaxonal amacrine cell and the starburst amacrine cell, all of which show direction selectivity. Moreover, we discovered that macaque starburst cells possess a strong, non-GABAergic, antagonistic surround mediated by input from excitatory bipolar cells that is critical for the generation of radial motion sensitivity in these cells. Our findings open a door to investigation of a precortical circuitry that computes motion direction in the primate visual system.


Assuntos
Conectoma , Macaca , Retina , Células Amácrinas/fisiologia , Animais , Potenciais Evocados Visuais/fisiologia , Macaca/fisiologia , Mamíferos , Camundongos , Primatas/fisiologia , Retina/fisiologia , Células Ganglionares da Retina/fisiologia , Sinapses/fisiologia
14.
Front Immunol ; 13: 895519, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784369

RESUMO

The cellular events that dictate the initiation of the complement pathway in ocular degeneration, such as age-related macular degeneration (AMD), is poorly understood. Using gene expression analysis (single cell and bulk), mass spectrometry, and immunohistochemistry, we dissected the role of multiple retinal and choroidal cell types in determining the complement homeostasis. Our scRNA-seq data show that the cellular response to early AMD is more robust in the choroid, particularly in fibroblasts, pericytes and endothelial cells. In late AMD, complement changes were more prominent in the retina especially with the expression of the classical pathway initiators. Notably, we found a spatial preference for these differences. Overall, this study provides insights into the heterogeneity of cellular responses for complement expression and the cooperation of neighboring cells to complete the pathway in healthy and AMD eyes. Further, our findings provide new cellular targets for therapies directed at complement.


Assuntos
Células Endoteliais , Degeneração Macular , Corioide , Proteínas do Sistema Complemento , Humanos , Degeneração Macular/genética , Retina
15.
J Neurophysiol ; 105(6): 2863-73, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21451064

RESUMO

For a given eye position, firing rates of abducens neurons (ABNs) generally (Mays et al. 1984), and lateral rectus (LR) motoneurons (MNs) in particular (Gamlin et al. 1989a), are higher in converged gaze than when convergence is relaxed, whereas LR and medial rectus (MR) muscle forces are slightly lower (Miller et al. 2002). Here, we confirm this finding for ABNs, report a similarly paradoxical finding for neurons in the MR subdivision of the oculomotor nucleus (MRNs), and, for the first time, simultaneously confirm the opposing sides of these paradoxes by recording physiological LR and MR forces. Four trained rhesus monkeys with binocular eye coils and custom muscle force transducers on the horizontal recti of one eye fixated near and far targets, making conjugate saccades and symmetric and asymmetric vergence movements of 16-27°. Consistent with earlier findings, we found in 44 ABNs that the slope of the rate-position relationship for symmetric vergence (k(V)) was lower than that for conjugate movement (k(C)) at distance, i.e., mean k(V)/k(C) = 0.50, which implies stronger LR innervation in convergence. We also found in 39 MRNs that mean k(V)/k(C) = 1.53, implying stronger MR innervation in convergence as well. Despite there being stronger innervation in convergence at a given eye position, we found both LR and MR muscle forces to be slightly lower in convergence, -0.40 and -0.20 g, respectively. We conclude that the relationship of ensemble MN activity to total oculorotary muscle force is different in converged gaze than when convergence is relaxed. We conjecture that LRMNs with k(V) < k(C) and MRMNs with k(V) > k(C) innervate muscle fibers that are weak, have mechanical coupling that attenuates their effective oculorotary force, or serve some nonoculorotary, regulatory function.


Assuntos
Tronco Encefálico/citologia , Convergência Ocular/fisiologia , Neurônios Motores/fisiologia , Força Muscular/fisiologia , Músculos Oculomotores/inervação , Potenciais de Ação/fisiologia , Animais , Eletromiografia , Potencial Evocado Motor/fisiologia , Lateralidade Funcional , Macaca mulatta
16.
Nature ; 433(7027): 749-54, 2005 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-15716953

RESUMO

Human vision starts with the activation of rod photoreceptors in dim light and short (S)-, medium (M)-, and long (L)- wavelength-sensitive cone photoreceptors in daylight. Recently a parallel, non-rod, non-cone photoreceptive pathway, arising from a population of retinal ganglion cells, was discovered in nocturnal rodents. These ganglion cells express the putative photopigment melanopsin and by signalling gross changes in light intensity serve the subconscious, 'non-image-forming' functions of circadian photoentrainment and pupil constriction. Here we show an anatomically distinct population of 'giant', melanopsin-expressing ganglion cells in the primate retina that, in addition to being intrinsically photosensitive, are strongly activated by rods and cones, and display a rare, S-Off, (L + M)-On type of colour-opponent receptive field. The intrinsic, rod and (L + M) cone-derived light responses combine in these giant cells to signal irradiance over the full dynamic range of human vision. In accordance with cone-based colour opponency, the giant cells project to the lateral geniculate nucleus, the thalamic relay to primary visual cortex. Thus, in the diurnal trichromatic primate, 'non-image-forming' and conventional 'image-forming' retinal pathways are merged, and the melanopsin-based signal might contribute to conscious visual perception.


Assuntos
Percepção de Cores/fisiologia , Macaca/fisiologia , Células Ganglionares da Retina/fisiologia , Opsinas de Bastonetes/metabolismo , Núcleos Talâmicos/fisiologia , Animais , Células Cultivadas , Escuridão , Humanos , Técnicas In Vitro , Luz , Transdução de Sinal Luminoso/efeitos da radiação , Retina/citologia , Retina/fisiologia , Retina/efeitos da radiação , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Fotorreceptoras Retinianas Cones/efeitos da radiação , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/efeitos da radiação , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/efeitos da radiação , Opsinas de Bastonetes/genética , Núcleos Talâmicos/efeitos da radiação , Vias Visuais/fisiologia , Vias Visuais/efeitos da radiação
17.
J Affect Disord ; 291: 93-101, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34029883

RESUMO

A retinal subsensitivity to environmental light may trigger Seasonal Affective Disorder (SAD) under low wintertime light conditions. The main aim of this study was to assess the responses of melanopsin-containing retinal ganglion cells in participants (N= 65) diagnosed with unipolar SAD compared to controls with no history of depression. Participants attended a summer visit, a winter visit, or both. Retinal responses to light were measured using the post-illumination pupil response (PIPR) to assess melanopsin-driven responses in the non-visual light input pathway. Linear mixed-effects modeling was used to test a group*season interaction on the Net PIPR (red minus blue light response, percent baseline). We observed a significant group*season interaction such that the PIPR decreased from summer to winter significantly in the SAD group while not in the control group. The SAD group PIPR was significantly lower in winter compared to controls but did not differ between groups in summer. Only 60% of the participants underwent an eye health exam, although all participants reported no history of retinal pathology, and eye exam status was neither associated with outcome nor different between groups. This seasonal variation in melanopsin driven non-visual responses to light may be a risk factor for SAD, and further highlights individual differences in responses to light for direct or indirect effects of light on mood.


Assuntos
Pupila , Transtorno Afetivo Sazonal , Humanos , Opsinas de Bastonetes , Estações do Ano
18.
Invest Ophthalmol Vis Sci ; 61(8): 5, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32634204

RESUMO

Purpose: In frontal-eyed mammals such as primates, eye movements are coordinated so that the lines of sight are directed at targets in a manner that adjusts for target distance. The lens of each eye must also be adjusted with respect to target distance to maintain precise focus. Whether the systems for controlling eye movements are monocularly or binocularly organized is currently a point of contention. We recently determined that the premotor neurons controlling the lens of one eye are bilaterally distributed in the midbrain. In this study, we examine whether this is due to premotor neurons projecting bilaterally to the preganglionic Edinger-Westphal nuclei, or by a mixture of ipsilaterally and contralaterally projecting cells supplying each nucleus. Methods: The ciliary muscles of Macaca fasicularis monkeys were injected with recombinant forms of the N2c rabies virus, one eye with virus that produced a green fluorescent marker and the other eye with a virus that produced a red fluorescent marker. Results: Preganglionic motoneurons in the Edinger-Westphal nucleus displayed the same marker as the ipsilateral injected muscle. Many of the premotor neurons in the supraoculomotor area and central mesencephalic reticular formation were doubly labeled. Others were labeled from either the ipsilateral or contralateral eye. Conclusions: These results suggest that both monocular control and binocular control of lens accommodation are present. Binocular inputs yoke the accommodation in the two eyes. Monocular inputs may allow modification related to differences in each eye's target distance or differences in the capacities of the two ciliary muscles.


Assuntos
Acomodação Ocular/fisiologia , Núcleo de Edinger-Westphal/fisiologia , Movimentos Oculares/fisiologia , Animais , Feminino , Macaca fascicularis , Modelos Animais , Neurônios Motores/fisiologia , Vias Neurais
19.
J Neurosci ; 28(48): 12654-71, 2008 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-19036959

RESUMO

In the primate visual system approximately 20 morphologically distinct pathways originate from retinal ganglion cells and project in parallel to the lateral geniculate nucleus (LGN) and/or the superior colliculus. Understanding of the properties of these pathways and the significance of such extreme early pathway diversity for later visual processing is limited. In a companion study we found that the magnocellular LGN-projecting parasol ganglion cells also projected to the superior colliculus and showed Y-cell receptive field structure supporting the hypothesis that the parasol cells are analogous to the well studied alpha-Y cell of the cat's retina. We here identify a novel ganglion cell class, the smooth monostratified cells, that share many properties with the parasol cells. Smooth cells were retrogradely stained from tracer injections made into either the LGN or superior colliculus and formed inner-ON and outer-OFF populations with narrowly monostratified dendritic trees that surprisingly appeared to perfectly costratify with the dendrites of parasol cells. Also like parasol cells, smooth cells summed input from L- and M-cones, lacked measurable S-cone input, showed high spike discharge rates, high contrast and temporal sensitivity, and a Y-cell type nonlinear spatial summation. Smooth cells were distinguished from parasol cells however by smaller cell body and axon diameters but approximately 2 times larger dendritic tree and receptive field diameters that formed a regular but lower density mosaic organization. We suggest that the smooth and parasol populations may sample a common presynaptic circuitry but give rise to distinct, parallel achromatic spatial channels in the primate retinogeniculate pathway.


Assuntos
Axônios/ultraestrutura , Corpos Geniculados/citologia , Células Ganglionares da Retina/citologia , Colículos Superiores/citologia , Vias Visuais/citologia , Percepção Visual/fisiologia , Potenciais de Ação/fisiologia , Animais , Axônios/fisiologia , Forma Celular/fisiologia , Dendritos/fisiologia , Dendritos/ultraestrutura , Dextranos , Corpos Geniculados/fisiologia , Macaca mulatta , Dinâmica não Linear , Orientação/fisiologia , Células Ganglionares da Retina/fisiologia , Rodaminas , Percepção Espacial/fisiologia , Coloração e Rotulagem , Colículos Superiores/fisiologia , Sinapses/fisiologia , Sinapses/ultraestrutura , Campos Visuais/fisiologia , Vias Visuais/fisiologia
20.
Methods Mol Biol ; 1950: 249-262, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30783978

RESUMO

Adeno-associated virus (AAV) has emerged as the vector of choice for delivering genes to the retina. Indeed, the first gene therapy to receive FDA approval in the United States is an AAV-based treatment for the inherited retinal disease, Leber congenital amaurosis-2. Voretigene neparvovec (Luxturna™) is delivered to patients via subretinal (SR) injection, an invasive surgical procedure that requires detachment of photoreceptors (PRs) from the retinal pigment epithelium (RPE). It has been reported that subretinal administration of vector under the cone-exclusive fovea leads to a loss of central retinal structure and visual acuity in some patients. Due to its technical difficulty and potential risks, alternatives to SR injection have been explored in primates. Intravitreally (Ivt) delivered AAV transduces inner retina and foveal cones, but with low efficiency. Novel AAV capsid variants identified via rational design or directed evolution have offered only incremental improvements, and have failed to promote pan-inner retinal transduction or significant outer retinal transduction beyond the fovea. Problems with retinal transduction by Ivt-delivered AAV include dilution in the vitreous, potential antibody-mediated neutralization of capsid in this nonimmune privileged space, and the presence of the inner limiting membrane (ILM), a basement membrane separating the vitreous from the neural retina. We have developed an alternative "subILM" injection method that overcomes all three hurdles. Specifically, vector is placed in a surgically induced, hydrodissected space between the ILM and neural retina. We have shown that subILM injection promotes more efficient retinal transduction by AAV than Ivt injection, and results in uniform and extensive transduction of retinal ganglion cells (RGCs) beneath the subILM bleb. We have also demonstrated transduction of Muller glia, ON bipolar cells, and photoreceptors by subILM injection. Our results confirm that the ILM is a major barrier to transduction by AAV in primate retina and that, when it is circumvented, the efficiency and depth to which AAV2 promotes transduction of multiple retinal cell classes is greatly enhanced. Here we describe in detail methods for vector preparation, vector dilution, and subILM injection as performed in macaque (Macaca sp.).


Assuntos
Dependovirus/genética , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Retina/metabolismo , Transdução Genética , Animais , Expressão Gênica , Genes Reporter , Injeções , Macaca , Microscopia de Fluorescência , Células Ganglionares da Retina/metabolismo , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA