RESUMO
Despite their medical and economic relevance, it remains largely unknown how suboptimal temperatures affect adult insect reproduction. Here, we report an in-depth analysis of how chronic adult exposure to suboptimal temperatures affects oogenesis using the model insect Drosophila melanogaster. In adult females maintained at 18°C (cold) or 29°C (warm), relative to females at the 25°C control temperature, egg production was reduced through distinct cellular mechanisms. Chronic 18°C exposure improved germline stem cell maintenance, survival of early germline cysts and oocyte quality, but reduced follicle growth with no obvious effect on vitellogenesis. By contrast, in females at 29°C, germline stem cell numbers and follicle growth were similar to those at 25°C, while early germline cyst death and degeneration of vitellogenic follicles were markedly increased and oocyte quality plummeted over time. Finally, we also show that these effects are largely independent of diet, male factors or canonical temperature sensors. These findings are relevant not only to cold-blooded organisms, which have limited thermoregulation, but also potentially to warm-blooded organisms, which are susceptible to hypothermia, heatstroke and fever.
Assuntos
Linhagem da Célula/fisiologia , Drosophila melanogaster/fisiologia , Células Germinativas/fisiologia , Oogênese/fisiologia , Células-Tronco/fisiologia , Animais , Temperatura Baixa , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Masculino , Oócitos/fisiologia , Folículo Ovariano/fisiologia , Ovário/fisiologia , Transdução de Sinais/fisiologia , Vitelogênese/fisiologiaRESUMO
In insects, eggshell hardening involves cross-linking of chorion proteins via their tyrosine residues. This process is catalyzed by peroxidases at the expense of H2O2 and confers physical and biological protection to the developing embryo. Here, working with Rhodnius prolixus, the insect vector of Chagas disease, we show that an ovary dual oxidase (Duox), a NADPH oxidase, is the source of the H2O2 that supports dityrosine-mediated protein cross-linking and eggshell hardening. RNAi silencing of Duox activity decreased H2O2 generation followed by a failure in embryo development caused by a reduced resistance to water loss, which, in turn, caused embryos to dry out following oviposition. Phenotypes of Duox-silenced eggs were reversed by incubation in a water-saturated atmosphere, simultaneous silencing of the Duox and catalase genes, or H2O2 injection into the female hemocoel. Taken together, our results show that Duox-generated H2O2 fuels egg chorion hardening and that this process plays an essential role during eggshell waterproofing.
Assuntos
NADPH Oxidases/metabolismo , Rhodnius/enzimologia , Sequência de Aminoácidos , Animais , Córion/fisiologia , Feminino , Genes de Insetos , Peróxido de Hidrogênio/metabolismo , Dados de Sequência Molecular , NADPH Oxidases/química , NADPH Oxidases/genética , Oogênese/genética , Oogênese/fisiologia , Ovário/enzimologia , Filogenia , Estrutura Terciária de Proteína , Interferência de RNA , Rhodnius/genética , Rhodnius/fisiologia , Homologia de Sequência de AminoácidosRESUMO
The presence of bacteria in the midgut of mosquitoes antagonizes infectious agents, such as Dengue and Plasmodium, acting as a negative factor in the vectorial competence of the mosquito. Therefore, knowledge of the molecular mechanisms involved in the control of midgut microbiota could help in the development of new tools to reduce transmission. We hypothesized that toxic reactive oxygen species (ROS) generated by epithelial cells control bacterial growth in the midgut of Aedes aegypti, the vector of Yellow fever and Dengue viruses. We show that ROS are continuously present in the midgut of sugar-fed (SF) mosquitoes and a blood-meal immediately decreased ROS through a mechanism involving heme-mediated activation of PKC. This event occurred in parallel with an expansion of gut bacteria. Treatment of sugar-fed mosquitoes with increased concentrations of heme led to a dose dependent decrease in ROS levels and a consequent increase in midgut endogenous bacteria. In addition, gene silencing of dual oxidase (Duox) reduced ROS levels and also increased gut flora. Using a model of bacterial oral infection in the gut, we show that the absence of ROS resulted in decreased mosquito resistance to infection, increased midgut epithelial damage, transcriptional modulation of immune-related genes and mortality. As heme is a pro-oxidant molecule released in large amounts upon hemoglobin degradation, oxidative killing of bacteria in the gut would represent a burden to the insect, thereby creating an extra oxidative challenge to the mosquito. We propose that a controlled decrease in ROS levels in the midgut of Aedes aegypti is an adaptation to compensate for the ingestion of heme.
Assuntos
Aedes/microbiologia , Heme/metabolismo , Hemoglobinas/metabolismo , Proteínas de Insetos/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Animais , Heme/farmacologia , Hemoglobinas/farmacologia , Humanos , CoelhosRESUMO
Temperature influences male fertility across organisms; however, how suboptimal temperatures affect adult spermatogenesis remains understudied. In a recent study on Drosophila melanogaster oogenesis, we observed a drastic reduction in the fertility of adult males exposed to warm temperature (29 °C). Here, we show that males become infertile at 29 °C because of low sperm abundance and quality. The low sperm abundance at 29 °C does not stem from reduced germline stem cell or spermatid numbers, as those numbers remain comparable between 29 °C and control 25 °C. Notably, males at cold 18 °C and 29 °C had similarly increased frequencies of spermatid elongation and individualization defects which, considering the high sperm abundance and male fertility measured at 18 °C, indicate that spermatogenesis has a high tolerance for elongation and individualization defects. Interestingly, the abundance of sperm at 29 °C decreases abruptly and with no evidence of apoptosis as they transition into the seminal vesicle near the end of spermatogenesis, pointing to sperm elimination through an unknown mechanism. Finally, sperm from males at 29 °C fertilize eggs less efficiently and do not support embryos past the first stage of embryogenesis, indicating that poor sperm quality is an additional cause of male infertility at 29 °C.
Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Masculino , Temperatura , Sêmen , Espermatozoides , Espermatogênese , FertilidadeRESUMO
Low levels of reactive oxygen species (ROS) are now recognized as essential players in cell signaling. Here, we studied the role of two conserved enzymes involved in redox regulation that play a critical role in the control of ROS in the digestive physiology of a blood-sucking insect, the kissing bug Rhodnius prolixus. RNAi-mediated silencing of RpNOX5 and RpXDH induced early mortality in adult females after a blood meal. Recently, a role for RpNOX5 in gut motility was reported, and here, we show that midgut peristalsis is also under the control of RpXDH. Together with impaired peristalsis, silencing either genes impaired egg production and hemoglobin digestion, and decreased hemolymph urate titers. Ultrastructurally, the silencing of RpNOX5 or RpXDH affected midgut cells, changing the cells of blood-fed insects to a phenotype resembling the cells of unfed insects, suggesting that these genes work together in the control of blood digestion. Injection of either allopurinol (an XDH inhibitor) or uricase recapitulated the gene silencing effects, suggesting that urate itself is involved in the control of blood digestion. The silencing of each of these genes influenced the expression of the other gene in a complex way both in the unfed state and after a blood meal, revealing signaling crosstalk between them that influences redox metabolism and nitrogen excretion and plays a central role in the control of digestive physiology.
RESUMO
Aedes aegypti mosquitoes transmit arboviruses of important global health impact, and their intestinal microbiota can influence vector competence by stimulating the innate immune system. Midgut epithelial cells also produce toxic reactive oxygen species (ROS) by dual oxidases (DUOXs) that are essential players in insect immunity. Strigomonas culicis is a monoxenous trypanosomatid that naturally inhabits mosquitoes; it hosts an endosymbiotic bacterium that completes essential biosynthetic pathways of the parasite and influences its oxidative metabolism. Our group previously showed that S. culicis hydrogen peroxide (H2O2)-resistant (WTR) strain is more infectious to A. aegypti mosquitoes than the wild-type (WT) strain. Here, we investigated the influence of both strains on the midgut oxidative environment and the effect of infection on mosquito fitness and immunity. WT stimulated the production of superoxide by mitochondrial metabolism of midgut epithelial cells after 4 days post-infection, while WTR exacerbated H2O2 production mediated by increased DUOX activity and impairment of antioxidant system. The infection with both strains also disrupted the fecundity and fertility of the females, with a greater impact on reproductive fitness of WTR-infected mosquitoes. The presence of these parasites induced specific transcriptional modulation of immune-related genes, such as attacin and defensin A during WTR infection (11.8- and 6.4-fold, respectively) and defensin C in WT infection (7.1-fold). Thus, we propose that A. aegypti oxidative response starts in early infection time and does not affect the survival of the H2O2-resistant strain, which has a more efficient antioxidant system. Our data provide new biological aspects of A. aegypti-S. culicis relationship that can be used later in alternative vector control strategies.
Assuntos
Aedes , Animais , Feminino , Aptidão Genética , Peróxido de Hidrogênio , Mosquitos Vetores , OxirreduçãoRESUMO
The termite gut is an efficient decomposer of polyphenol-rich diets, such as lignocellulosic biomasses, and it has been proposed that non-enzymatic oxidative mechanisms could be involved with the digestive process in these animals. However, oxidant levels are completely unknown in termites, as well as protective mechanisms against oxidative damage to the termite gut and its microbiota. As the first step in investigating the role oxidants plays in termite gut physiology, this work presents oxidant levels, antioxidant enzymatic defenses, cell renewal and microbiota abundance along the litter-feeding termite Cornitermes cumulans gut compartments (foregut, midgut, mixed segment and hindgut p1, p3, p4, and p5 segments) and salivary glands. The results show variable levels of oxidants along the C. cumulans gut, the production of antioxidant enzymes, gut cell renewal as potential defenses against oxidative injuries and the profile of microbiota distribution (being predominantly inverse to oxidant levels). In this fashion, the oxidative challenges imposed by polyphenol-rich diet seem to be circumvented by the C. cumulans gut, ensuring efficiency of the digestive process together with preservation of tissue homoeostasis and microbiota growth. These results present new insights into the physicochemical properties of the gut in a litter-feeding termite, expanding our view in relation to termites' digestive physiology.
Assuntos
Enzimas/metabolismo , Trato Gastrointestinal/anatomia & histologia , Trato Gastrointestinal/fisiologia , Isópteros/fisiologia , Oxidantes/metabolismo , Animais , Antioxidantes/metabolismo , Sistema Digestório/metabolismo , Microbioma Gastrointestinal , Herbivoria , Proteínas de Insetos/metabolismo , Lignina/metabolismo , Glândulas Salivares/metabolismoRESUMO
Heme crystallization as hemozoin represents the dominant mechanism of heme disposal in blood feeding triatomine insect vectors of the Chagas disease. The absence of drugs or vaccine for the Chagas disease causative agent, the parasite Trypanosoma cruzi, makes the control of vector population the best available strategy to limit disease spread. Although heme and redox homeostasis regulation is critical for both triatomine insects and T. cruzi, the physiological relevance of hemozoin for these organisms remains unknown. Here, we demonstrate that selective blockage of heme crystallization in vivo by the antimalarial drug quinidine, caused systemic heme overload and redox imbalance in distinct insect tissues, assessed by spectrophotometry and fluorescence microscopy. Quinidine treatment activated compensatory defensive heme-scavenging mechanisms to cope with excessive heme, as revealed by biochemical hemolymph analyses, and fat body gene expression. Importantly, egg production, oviposition, and total T. cruzi parasite counts in R. prolixus were significantly reduced by quinidine treatment. These effects were reverted by oral supplementation with the major insect antioxidant urate. Altogether, these data underscore the importance of heme crystallization as the main redox regulator for triatomine vectors, indicating the dual role of hemozoin as a protective mechanism to allow insect fertility, and T. cruzi life-cycle. Thus, targeting heme crystallization in insect vectors represents an innovative way for Chagas disease control, by reducing simultaneously triatomine reproduction and T. cruzi transmission.
Assuntos
Doença de Chagas/parasitologia , Heme/química , Insetos Vetores/metabolismo , Rhodnius/metabolismo , Trypanosoma cruzi/fisiologia , Animais , Doença de Chagas/transmissão , Cristalização , Feminino , Heme/metabolismo , Humanos , Insetos Vetores/química , Insetos Vetores/parasitologia , Masculino , Oviposição , Oxirredução , Rhodnius/química , Rhodnius/parasitologiaRESUMO
BACKGROUND: NADPH Oxidase 5 (Nox5) is a calcium-sensitive superoxide-generating Nox. It is present in lower forms and higher mammals, but not in rodents. Nox5 is expressed in vascular cells, but the functional significance remains elusive. Given that contraction is controlled by calcium and reactive oxygen species, both associated with Nox5, we questioned the role of Nox5 in pro-contractile signaling and vascular function. METHODS AND RESULTS: Transgenic mice expressing human Nox5 in a vascular smooth muscle cell-specific manner (Nox5 mice) and Rhodnius prolixus, an arthropod model that expresses Nox5 endogenoulsy, were studied. Reactive oxygen species generation was increased systemically and in the vasculature and heart in Nox5 mice. In Nox5-expressing mice, agonist-induced vasoconstriction was exaggerated and endothelium-dependent vasorelaxation was impaired. Vascular structural and mechanical properties were not influenced by Nox5. Vascular contractile responses in Nox5 mice were normalized by N-acetylcysteine and inhibitors of calcium channels, calmodulin, and endoplasmic reticulum ryanodine receptors, but not by GKT137831 (Nox1/4 inhibitor). At the cellular level, vascular changes in Nox5 mice were associated with increased vascular smooth muscle cell [Ca2+]i, increased reactive oxygen species and nitrotyrosine levels, and hyperphosphorylation of pro-contractile signaling molecules MLC20 (myosin light chain 20) and MYPT1 (myosin phosphatase target subunit 1). Blood pressure was similar in wild-type and Nox5 mice. Nox5 did not amplify angiotensin II effects. In R. prolixus, gastrointestinal smooth muscle contraction was blunted by Nox5 silencing, but not by VAS2870 (Nox1/2/4 inhibitor). CONCLUSIONS: Nox5 is a pro-contractile Nox isoform important in redox-sensitive contraction. This involves calcium-calmodulin and endoplasmic reticulum-regulated mechanisms. Our findings define a novel function for vascular Nox5, linking calcium and reactive oxygen species to the pro-contractile molecular machinery in vascular smooth muscle cells.
Assuntos
Sinalização do Cálcio , Cardiopatias/enzimologia , Hipertensão/enzimologia , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , NADPH Oxidase 5/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Vasoconstrição , Animais , Pressão Sanguínea , Calmodulina/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Cardiopatias/genética , Cardiopatias/fisiopatologia , Humanos , Hipertensão/genética , Hipertensão/fisiopatologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Camundongos Transgênicos , Músculo Liso Vascular/fisiopatologia , NADPH Oxidase 5/genética , Oxirredução , Rhodnius , VasodilataçãoRESUMO
Sensing incoming nutrients is an important and critical event for intestinal cells to sustain life of the whole organism. The TORC is a major protein complex involved in monitoring the nutritional status and is activated by elevated amino acid concentrations. An important feature of haematophagy is that huge amounts of blood are ingested in a single meal, which results in the release of large quantities of amino acids, together with the haemoglobin prosthetic group, haem, which decomposes hydroperoxides and propagates oxygen-derived free radicals. Our previous studies demonstrated that reactive oxygen species (ROS) levels were diminished in the mitochondria and midgut of the Dengue fever mosquito, Aedes aegypti, immediately after a blood meal. We proposed that this mechanism serves to avoid oxidative damage that would otherwise be induced by haem following a blood meal. Studies also performed in mosquitoes have shown that blood or amino acids controls protein synthesis through TORC activation. It was already proposed, in different models, a link between ROS and TOR, however, little is known about TOR signalling in insect midgut nor about the involvement of ROS in this pathway. Here, we studied the effect of a blood meal on ROS production in the midgut of Rhodnius prolixus We observed that blood meal amino acids decreased ROS levels in the R. prolixus midgut immediately after feeding, via lowering mitochondrial superoxide production and involving the amino acid-sensing TORC pathway.
Assuntos
Regulação para Baixo , Proteínas de Insetos/metabolismo , Mucosa Intestinal/metabolismo , Complexos Multiproteicos/metabolismo , Rhodnius/metabolismo , Superóxidos/metabolismo , Aminoácidos/metabolismo , AnimaisRESUMO
The bloodsucking hemipteran Rhodnius prolixus is a vector of Chagas' disease, which affects 7-8 million people today in Latin America. In contrast to other hematophagous insects, the triatomine gut is compartmentalized into three segments that perform different functions during blood digestion. Here we report analysis of transcriptomes for each of the segments using pyrosequencing technology. Comparison of transcript frequency in digestive libraries with a whole-body library was used to evaluate expression levels. All classes of digestive enzymes were highly expressed, with a predominance of cysteine and aspartic proteinases, the latter showing a significant expansion through gene duplication. Although no protein digestion is known to occur in the anterior midgut (AM), protease transcripts were found, suggesting secretion as pro-enzymes, being possibly activated in the posterior midgut (PM). As expected, genes related to cytoskeleton, protein synthesis apparatus, protein traffic, and secretion were abundantly transcribed. Despite the absence of a chitinous peritrophic membrane in hemipterans - which have instead a lipidic perimicrovillar membrane lining over midgut epithelia - several gut-specific peritrophin transcripts were found, suggesting that these proteins perform functions other than being a structural component of the peritrophic membrane. Among immunity-related transcripts, while lysozymes and lectins were the most highly expressed, several genes belonging to the Toll pathway - found at low levels in the gut of most insects - were identified, contrasting with a low abundance of transcripts from IMD and STAT pathways. Analysis of transcripts related to lipid metabolism indicates that lipids play multiple roles, being a major energy source, a substrate for perimicrovillar membrane formation, and a source for hydrocarbons possibly to produce the wax layer of the hindgut. Transcripts related to amino acid metabolism showed an unanticipated priority for degradation of tyrosine, phenylalanine, and tryptophan. Analysis of transcripts related to signaling pathways suggested a role for MAP kinases, GTPases, and LKBP1/AMP kinases related to control of cell shape and polarity, possibly in connection with regulation of cell survival, response of pathogens and nutrients. Together, our findings present a new view of the triatomine digestive apparatus and will help us understand trypanosome interaction and allow insights into hemipteran metabolic adaptations to a blood-based diet.
Assuntos
Proteínas de Insetos/genética , Rhodnius/genética , Transcriptoma , Animais , Feminino , Trato Gastrointestinal , Proteínas de Insetos/biossíntese , América Latina , Masculino , Dados de Sequência Molecular , Análise de Sequência de DNARESUMO
Hemozoin (Hz) is a heme crystal produced by several blood-feeding organisms in order to detoxify free heme released upon hemoglobin (Hb) digestion. Here we show that heme crystallization also occurs in three species of triatomine insects. Ultraviolet-visible and infrared light absorption spectra of insoluble pigments isolated from the midgut of three triatomine species Triatoma infestans, Dipetalogaster maximus and Panstrongylus megistus indicated that all produce Hz. Morphological analysis of T. infestans and D. maximus midguts revealed the close association of Hz crystals to perimicrovillar membranes and also as multicrystalline assemblies, forming nearly spherical structures. Heme crystallization was promoted by isolated perimicrovillar membranes from all three species of triatomine bugs in vitro in heat-sensitive reactions. In conclusion, the data presented here indicate that Hz formation is an ancestral adaptation of Triatominae to a blood-sucking habit and that the presence of perimicrovillar membranes plays a central role in this process.