Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Ecol Lett ; 26(4): 485-489, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36849208

RESUMO

Natural disasters interact to affect the resilience and prosperity of communities and disproportionately affect low income families and communities of colour. However, due to lack of a common theoretical framework, these are rarely quantified. Observing severe weather events (e.g. hurricanes and tornadoes) and epidemics (e.g. COVID-19) unfolding in southeastern US communities led us to conjecture that interactions among catastrophic disturbances might be much more considerable than previously recognized. For instance, hurricane evacuations increase human aggregation, a factor that affects the transmission of acute infections like SARS-CoV-2. Similarly, weather damage to health infrastructure can reduce a community's ability to provide services to people who are ill. As globalization and human population and movement continue to increase and weather events are becoming more intense, such complex interactions are expected to magnify and significantly impact environmental and human health.


Assuntos
COVID-19 , Doenças Transmissíveis , Desastres , Clima Extremo , Humanos , SARS-CoV-2 , Doenças Transmissíveis/epidemiologia , Tempo (Meteorologia)
2.
Ecol Appl ; 33(2): e2761, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36218183

RESUMO

Some introduced species cause severe damage, although the majority have little impact. Robust predictions of which species are most likely to cause substantial impacts could focus efforts to mitigate those impacts or prevent certain invasions entirely. Introduced herbivorous insects can reduce crop yield, fundamentally alter natural and managed forest ecosystems, and are unique among invasive species in that they require certain host plants to succeed. Recent studies have demonstrated that understanding the evolutionary history of introduced herbivores and their host plants can provide robust predictions of impact. Specifically, divergence times between hosts in the native and introduced ranges of a nonnative insect can be used to predict the potential impact of the insect should it establish in a novel ecosystem. However, divergence time estimates vary among published phylogenetic datasets, making it crucial to understand if and how the choice of phylogeny affects prediction of impact. Here, we tested the robustness of impact prediction to variation in host phylogeny by using insects that feed on conifers and predicting the likelihood of high impact using four different published phylogenies. Our analyses ranked 62 insects that are not established in North America and 47 North American conifer species according to overall risk and vulnerability, respectively. We found that results were robust to the choice of phylogeny. Although published vascular plant phylogenies continue to be refined, our analysis indicates that those differences are not substantial enough to alter the predictions of invader impact. Our results can assist in focusing biosecurity programs for conifer pests and can be more generally applied to nonnative insects and their potential hosts by prioritizing surveillance for those insects most likely to be damaging invaders.


Assuntos
Ecossistema , Traqueófitas , Animais , Filogenia , Insetos , Plantas , Espécies Introduzidas
3.
New For (Dordr) ; : 1-22, 2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35344318

RESUMO

Emerald ash borer (Agrilus planipennis; EAB) has devastated populations of ash (Fraxinus spp.) trees in dozens of U.S. states and Canada over the past few decades. The continued survival of scattered ash trees known as "lingering ash" in heavily infested natural stands, however, offers evidence of genetic resistance or tolerance to EAB. These surviving or "lingering" ash individuals may form the basis for reforestation programs in EAB-impacted areas, and clonal mass-propagation of these genotypes can help accelerate these efforts. Between 2013 and 2018, we initiated embryogenic cultures by culturing immature zygotic embryos from open-pollinated (OP) seeds collected from several surviving white ash and green ash trees in Michigan and Pennsylvania. In addition, in 2018, we initiated cultures from crosses made between lingering green ash parents from the USDA Forest Service ash breeding program in Ohio. Somatic embryos were produced by growing cultures in liquid suspension, followed by fractionation and plating on semisolid medium to produce developmentally synchronous populations of somatic embryos. Somatic embryo germination and conversion were enhanced by a combination of pre-germination cold treatment and inclusion of activated charcoal and gibberellic acid in the germination medium. Ash somatic seedlings derived from OP explants grew rapidly following transfer to potting mix and somatic seedlings representing nine ash clones were acclimatized, grown in the greenhouse and planted in a preliminary field test, along with EAB-resistant Manchurian ash (F. mandshurica) and EAB-susceptible control seedlings. Somatic seedlings have now been produced from cultures that originated from seeds derived from the progeny of lingering green ash parents and an ex vitro germination protocol has shown some promise for accelerating early somatic seedling growth. Results of this research could provide the basis for scaled-up production of EAB-resistant ash varieties for seed orchard production for forest restoration and cultivar development for urban tree restoration.

4.
Ecol Appl ; 26(8): 2493-2504, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27787926

RESUMO

Timber harvest can adversely affect forest biota. Recent research and application suggest that retention of mature forest elements (retention forestry), including unharvested patches (or aggregates) within larger harvested units, can benefit biodiversity compared to clearcutting. However, it is unclear whether these benefits can be generalized among the diverse taxa and biomes in which retention forestry is practiced. Lack of comparability in methods for sampling and analyzing responses to timber harvest and edge creation presents a challenge to synthesis. We used a consistent methodology (similarly spaced plots or traps along transects) to investigate responses of vascular plants and ground-active beetles to aggregated retention at replicate sites in each of four temperate and boreal forest types on three continents: Douglas-fir forests in Washington, USA; aspen forests in Minnesota, USA; spruce forests in Sweden; and wet eucalypt forests in Tasmania, Australia. We assessed (1) differences in local (plot-scale) species richness and composition between mature (intact) and regenerating (previously harvested) forest; (2) the lifeboating function of aggregates (capacity to retain species of unharvested forest); and whether intact forests and aggregates (3) are susceptible to edge effects and (4) influence the adjacent regenerating forest. Intact and harvested forests differed in composition but not richness of plants and beetles. The magnitude of this difference was generally similar among regions, but there was considerable heterogeneity of composition within and among replicate sites. Aggregates within harvest units were effective at lifeboating for both plant and beetle communities. Edge effects were uncommon even within the aggregates. In contrast, effects of forest influence on adjacent harvested areas were common and as strong for aggregates as for larger blocks of intact forest. Our results provide strong support for the widespread application of aggregated retention in boreal and temperate forests. The consistency of pattern in four very different regions of the world suggests that, for forest plants and beetles, responses to aggregated retention are likely to apply more widely. Our results suggest that through strategic placement of aggregates, it is possible to maintain the natural heterogeneity and biodiversity of mature forests managed for multiple objectives.


Assuntos
Biodiversidade , Besouros , Florestas , Animais , Austrália , Conservação dos Recursos Naturais , Agricultura Florestal , Minnesota , Suécia , Tasmânia , Árvores , Washington
5.
J Econ Entomol ; 107(3): 1142-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25026675

RESUMO

The United States has a rich fauna of native Siricidae (wood wasps), but they are rarely studied because they have limited economic impact. In 2004, a non-native wood-boring pest, Sirex noctilio F., was found established in North America. Because S. noctilio is an economically important pest in pine plantations throughout the Southern Hemisphere, interest in the ecology of American native wood wasp populations has increased. A study was conducted during fall 2011 to investigate the effects of forest stand type and characteristics on native wood wasp abundance, and to describe their flight phenology in northeastern Mississippi. In total, 609 native wood wasps were captured, consisting of 608 Sirex nigricornis F. and one Urocerus cressoni Norton. There were significant treatment and location effects that influenced wood wasp abundance. The flight period of wood wasps captured in our study (October-December) was similar to studies in the southeastern United States, but differed from results in Minnesota and the northeastern United States (June-October). Wood wasp abundance was significantly correlated with higher basal area, smaller tree diameter at breast height, and shorter trees, all indicators of forest stand stress. It appears proper silvicultural management of pine plantations may reduce native wood wasp population abundance in the southeastern United States, as it does to S. noctilio in the Southern Hemisphere. We propose implementing management models used for the southern pine beetle to reduce stand hazard of future infestations of native and invasive wood wasps.


Assuntos
Árvores/anatomia & histologia , Árvores/crescimento & desenvolvimento , Vespas/fisiologia , Animais , Ecossistema , Feminino , Cadeia Alimentar , Agricultura Florestal , Mississippi , Densidade Demográfica
6.
Plant Physiol Biochem ; 210: 108641, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38663267

RESUMO

Manganese (Mn) deficiency is a widespread occurrence across different landscapes, including agricultural systems and managed forests, and causes interruptions in the normal metabolic functioning of plants. The microelement is well-characterized for its role in the oxygen-evolving complex in photosystem II and maintenance of photosynthetic structures. Mn is also required for a variety of enzymatic reactions in secondary metabolism, which play a crucial role in defense strategies for trees. Despite the strong relationship between Mn availability and the biosynthesis of defense-related compounds, there are few studies addressing how Mn deficiency can impact tree defense mechanisms and the ensuing ecological patterns and processes. Understanding this relationship and highlighting the potentially deleterious effects of Mn deficiency in trees can also inform silvicultural and management decisions to build more robust forests. In this review, we address this relationship, focusing on forest trees. We describe Mn availability in forest soils, characterize the known impacts of Mn deficiency in plant susceptibility, and discuss the relationship between Mn and defense-related compounds by secondary metabolite class. In our review, we find several lines of evidence that low Mn availability is linked with lowered or altered secondary metabolite activity. Additionally, we compile documented instances where Mn limitation has altered the defense capabilities of the host plant and propose potential ecological repercussions when studies are not available. Ultimately, this review aims to highlight the importance of untangling the effects of Mn limitation on the ecophysiology of plants, with a focus on forest trees in both managed and natural stands.


Assuntos
Manganês , Árvores , Manganês/metabolismo , Árvores/metabolismo , Florestas , Doenças das Plantas/imunologia , Animais
7.
J Econ Entomol ; 117(3): 1010-1021, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38555592

RESUMO

The southern pine beetle, Dendroctonus frontalis Zimmermann is an important mortality agent of Pinus in the eastern United States of America where it commonly shares hosts with the black turpentine beetle, Dendroctonus terebrans (Olivier), which infrequently kills trees. Unlike D. frontalis, which must kill its hosts to become established in the bark and reproduce, D. terebrans can occupy living hosts as a parasite. Olfactory mechanisms whereby D. frontalis initially locates hosts have not been demonstrated, whereas D. terebrans responds strongly to host odors. Because D. terebrans produces frontalin, the primary aggregation pheromone component for D. frontalis, and commonly arrives on hosts prior to D. frontalis, it has been hypothesized that D. terebrans pheromone components can mediate D. frontalis location of suitable, living trees. We assessed this possibility with studies of the semiochemical interactions between D. frontalis and D. terebrans. Coupled gas chromatography-electroantennographic detection analyses indicated that D. terebrans produces nine different olfactory stimulants for D. frontalis, nearly all of them known semiochemicals for D. frontalis. A trapping experiment designed to address the potentially confounding influence of lure contamination confirmed that the D. terebrans pheromone component exo-brevicomin enhances attraction of D. frontalis and thus could be an attractive kairomone. In ambulatory bioassays, male D. frontalis were strongly attracted to odors of frass of solitary female and paired D. terebrans, indicating their attraction to the naturally occurring semiochemicals of D. terebrans. Cues from D. terebrans may influence host and mate-finding success of D. frontalis and, thereby, the latter's virulence.


Assuntos
Feromônios , Pinus , Gorgulhos , Animais , Gorgulhos/fisiologia , Feromônios/farmacologia , Feminino , Masculino , Interações Hospedeiro-Parasita
8.
Sci Rep ; 14(1): 12778, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834684

RESUMO

Working forests comprise a large proportion of forested landscapes in the southeastern United States and are important to the conservation of bats, which rely on forests for roosting and foraging. While relationships between bat ecology and forest management are well studied during summer, winter bat ecology remains understudied. Hence, we aimed to identify the diet composition of overwintering bats, compare the composition of prey consumed by bat species, and determine the potential role of forest bats as pest controllers in working forest landscapes of the southeastern U.S. Coastal Plain. During January to March 2021-2022, we captured 264 bats of eight species. We used DNA metabarcoding to obtain diet composition from 126 individuals of seven bat species identifying 22 orders and 174 families of arthropod prey. Although Coleoptera, Diptera, and Lepidoptera were the most consumed orders, we found that bats had a generalist diet but with significant differences among some species. We also documented the consumption of multiple insect pests (e.g., Rhyacionia frustrana) and disease vectors (e.g., Culex spp). Our results provide important information regarding the winter diet of bats in the southeastern U.S. Coastal Plain and their potential role in controlling economically relevant pest species and disease vectors.


Assuntos
Quirópteros , Dieta , Florestas , Estações do Ano , Animais , Quirópteros/fisiologia , Sudeste dos Estados Unidos , Comportamento Predatório/fisiologia
9.
J Econ Entomol ; 106(1): 206-14, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23448033

RESUMO

We conducted two field trapping experiments with multiple-funnel traps in 2008 and one experiment in 2010 to determine the effects of lure placement (inside or outside funnels) on catches of saproxylic species of beetles (Coleoptera). The experiments were conducted in southern pine (Pinus spp.) stands in central Georgia using combinations of ethanol, alpha-pinene, ipsenol, and ipsdienol lures. We report on a modification to the multiple-funnel trap that allows placement of large lures inside the confines of the funnels with minimal blockage. In general, catches of five species of common longhorn beetles (Cerambycidae), two species of regeneration weevils (Curculionidae), four species of bark beetles (Curculionidae: Scolytinae), and seven species of beetle predators and ectoparasites (Cleridae, Histeridae, Tenebrionidae, Trogossitidae, and Zopheridae) were higher in funnel traps with lures attached inside the funnels than in those with lures attached outside of the funnels. Catches of the remaining species were unaffected by lure placement. In no instance were catches of any species lower in funnel traps with lures attached inside the funnels than in those with lures attached outside of the funnels. For most species, catches in modified funnel traps with ethanol, alpha-pinene, ipsenol, and ipsdienol lures attached inside funnels were comparable with those in cross-vane panel traps.


Assuntos
Besouros , Feromônios/administração & dosagem , Animais , Biodiversidade , Herbivoria , Pinus
10.
J Econ Entomol ; 106(6): 2391-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24498739

RESUMO

We provide the first report of Matsucoccus macrocicatrices Richards (Hemiptera: Matsucoccidae) feeding and reproducing on eastern white pine, Pinus strobus L., in the southeastern United States. Until now, M. macrocicatrices had been reported only from the Canadian Atlantic Maritimes, New Hampshire, and Massachusetts. Entomological holdings of 27 major museums in eastern North America have no historical records for M. macrocicatrices from the southeastern region. However, our field surveys and molecular analyses (DNA barcoding) have resulted in the collection and positive identification of M. macrocicatrices in Georgia, North Carolina, South Carolina, Tennessee, Virginia, and West Virginia In addition to the new geographic range, M. macrocicatrices is also being associated with dieback and mortality of all diameter classes of P. strobus leading to concern about a potential shift from its historically nonpestiferous presence on the host tree. On P. strobus, M. macrocicatrices was found embedded in cankers or present on top of the bark with necrotic tissue under their feeding area, indicating that they may be creating wounds for opportunistic pathogenic fungi to infest. Further, we found M. macrocicatrices living outside of the epiphytic mats of its symbiotic fungus, Septobasidium pinicola Snell. This study shows that M. macrocicatrices is now widespread in the southeastern United States, with implications for the future survival and regeneration of P. strobus in eastern North America.


Assuntos
Fungos/fisiologia , Hemípteros/fisiologia , Pinus/microbiologia , Pinus/fisiologia , Animais , Região dos Apalaches , Contagem de Colônia Microbiana , Cadeia Alimentar , Agricultura Florestal , Fungos/classificação , Genes de Insetos , Geografia , Hemípteros/classificação , Hemípteros/genética , Dados de Sequência Molecular , Pinus/crescimento & desenvolvimento , Reação em Cadeia da Polimerase , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/metabolismo , RNA Ribossômico 28S/genética , RNA Ribossômico 28S/metabolismo , Sudeste dos Estados Unidos , Simbiose
11.
Sci Total Environ ; 904: 166821, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37678529

RESUMO

Anthropogenic contamination from coal-fired power plants and nuclear reactors is a pervasive issue impacting ecosystems across the globe. As a result, it is critical that studies continue to assess the accumulation and effects of trace elements and radionuclides in a diversity of biota. In particular, bioindicator species are a powerful tool for risk assessment of chemically contaminated habitats. Using inductively coupled plasma mass spectrometry (ICP-MS) and auto-gamma counting, we analyzed trace element and radiocesium contaminant concentrations in Scarabaeidae and Silphidae beetles (Order: Coleoptera), important taxa in decomposition and nutrient cycling, at contaminated and reference sites on the Savannah River Site, South Carolina, U.S. Our results revealed variability in trace element concentrations between Scarabaeidae and Silphidae beetles at uncontaminated and contaminated sites. Compared to Scarabaeidae, Silphidae had higher levels of chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), and zinc (Zn). Unexpectedly, concentrations of Cr, Cu, and Ni were higher in both taxa at the uncontaminated sites. Scarabaeidae and Silphidae beetles at the coal combustion waste site consistently had high concentrations of arsenic (As), and Scarabaeidae had high concentrations of selenium (Se). Of the 50 beetles analyzed for radiocesium levels, two had elevated radioactivity concentrations, both of which were from a site contaminated with radionuclides. Our results suggest carrion beetles may be particularly sensitive to bioaccumulation of contaminants due to their trophic position and role in decomposition, and thus are useful sentinels of trace element and radionuclide contamination.


Assuntos
Besouros , Oligoelementos , Animais , Oligoelementos/análise , Ecossistema , Carvão Mineral/análise , Bioacumulação , Níquel/análise , Cromo/análise , Radioisótopos/análise
12.
Annu Rev Phytopathol ; 61: 377-401, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37253697

RESUMO

Society is confronted by interconnected threats to ecological sustainability. Among these is the devastation of forests by destructive non-native pathogens and insects introduced through global trade, leading to the loss of critical ecosystem services and a global forest health crisis. We argue that the forest health crisis is a public-good social dilemma and propose a response framework that incorporates principles of collective action. This framework enables scientists to better engage policymakers and empowers the public to advocate for proactive biosecurity and forest health management. Collective action in forest health features broadly inclusive stakeholder engagement to build trust and set goals; accountability for destructive pest introductions; pooled support for weakest-link partners; and inclusion of intrinsic and nonmarket values of forest ecosystems in risk assessment. We provide short-term and longer-term measures that incorporate the above principles to shift the societal and ecological forest health paradigm to a more resilient state.


Assuntos
Ecossistema , Médicos , Humanos , Florestas , Biosseguridade , Medição de Risco
13.
Ecology ; 104(5): e4036, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36944538

RESUMO

Climate change models often assume similar responses to temperatures across the range of a species, but local adaptation or phenotypic plasticity can lead plants and animals to respond differently to temperature in different parts of their range. To date, there have been few tests of this assumption at the scale of continents, so it is unclear if this is a large-scale problem. Here, we examined the assumption that insect taxa show similar responses to temperature at 96 sites in grassy habitats across North America. We sampled insects with Malaise traps during 2019-2021 (N = 1041 samples) and examined the biomass of insects in relation to temperature and time of season. Our samples mostly contained Diptera (33%), Lepidoptera (19%), Hymenoptera (18%), and Coleoptera (10%). We found strong regional differences in the phenology of insects and their response to temperature, even within the same taxonomic group, habitat type, and time of season. For example, the biomass of nematoceran flies increased across the season in the central part of the continent, but it only showed a small increase in the Northeast and a seasonal decline in the Southeast and West. At a smaller scale, insect biomass at different traps operating on the same days was correlated up to ~75 km apart. Large-scale geographic and phenological variation in insect biomass and abundance has not been studied well, and it is a major source of controversy in previous analyses of insect declines that have aggregated studies from different locations and time periods. Our study illustrates that large-scale predictions about changes in insect populations, and their causes, will need to incorporate regional and taxonomic differences in the response to temperature.


Assuntos
Insetos , Lepidópteros , Animais , Temperatura , Insetos/fisiologia , Ecossistema , Aclimatação
14.
Biol Rev Camb Philos Soc ; 97(5): 1930-1947, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35808863

RESUMO

Disturbances alter biodiversity via their specific characteristics, including severity and extent in the landscape, which act at different temporal and spatial scales. Biodiversity response to disturbance also depends on the community characteristics and habitat requirements of species. Untangling the mechanistic interplay of these factors has guided disturbance ecology for decades, generating mixed scientific evidence of biodiversity responses to disturbance. Understanding the impact of natural disturbances on biodiversity is increasingly important due to human-induced changes in natural disturbance regimes. In many areas, major natural forest disturbances, such as wildfires, windstorms, and insect outbreaks, are becoming more frequent, intense, severe, and widespread due to climate change and land-use change. Conversely, the suppression of natural disturbances threatens disturbance-dependent biota. Using a meta-analytic approach, we analysed a global data set (with most sampling concentrated in temperate and boreal secondary forests) of species assemblages of 26 taxonomic groups, including plants, animals, and fungi collected from forests affected by wildfires, windstorms, and insect outbreaks. The overall effect of natural disturbances on α-diversity did not differ significantly from zero, but some taxonomic groups responded positively to disturbance, while others tended to respond negatively. Disturbance was beneficial for taxonomic groups preferring conditions associated with open canopies (e.g. hymenopterans and hoverflies), whereas ground-dwelling groups and/or groups typically associated with shady conditions (e.g. epigeic lichens and mycorrhizal fungi) were more likely to be negatively impacted by disturbance. Across all taxonomic groups, the highest α-diversity in disturbed forest patches occurred under moderate disturbance severity, i.e. with approximately 55% of trees killed by disturbance. We further extended our meta-analysis by applying a unified diversity concept based on Hill numbers to estimate α-diversity changes in different taxonomic groups across a gradient of disturbance severity measured at the stand scale and incorporating other disturbance features. We found that disturbance severity negatively affected diversity for Hill number q = 0 but not for q = 1 and q = 2, indicating that diversity-disturbance relationships are shaped by species relative abundances. Our synthesis of α-diversity was extended by a synthesis of disturbance-induced change in species assemblages, and revealed that disturbance changes the ß-diversity of multiple taxonomic groups, including some groups that were not affected at the α-diversity level (birds and woody plants). Finally, we used mixed rarefaction/extrapolation to estimate biodiversity change as a function of the proportion of forests that were disturbed, i.e. the disturbance extent measured at the landscape scale. The comparison of intact and naturally disturbed forests revealed that both types of forests provide habitat for unique species assemblages, whereas species diversity in the mixture of disturbed and undisturbed forests peaked at intermediate values of disturbance extent in the simulated landscape. Hence, the relationship between α-diversity and disturbance severity in disturbed forest stands was strikingly similar to the relationship between species richness and disturbance extent in a landscape consisting of both disturbed and undisturbed forest habitats. This result suggests that both moderate disturbance severity and moderate disturbance extent support the highest levels of biodiversity in contemporary forest landscapes.


Assuntos
Biodiversidade , Florestas , Animais , Aves , Ecossistema , Humanos , Plantas , Árvores
15.
J Econ Entomol ; 104(2): 574-9, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21510207

RESUMO

Field-based trapping experiments were conducted in Ohio in 2003, 2004, and 2008 to determine the influence of (-)-alpha-pinene on the attraction of exotic and native ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) to ethanol-baited traps. In 2003 and 2004, we determined the effect of adding an (-)-alpha-pinene ultrahigh release lure (UHR; 2 g/d at 20 degrees C) to traps baited with an ethanol UHR lure (0.39 g/d). FewerAnisandrus (Xyleborus) sayi (Hopkins) and Xyleborinus saxeseni (Ratzeburg) were collected in 2003 and 2004 from traps baited with ethanol UHR plus (-)-alpha-pinene UHR compared with ethanol UHR. (-)-alpha-Pinene also reduced the attraction of Xyloterinus politus (Say) to ethanol-baited traps in 2004. Total captures of Xylosandrus germanus (Blandford) in 2003 were higher in traps baited with ethanol UHR plus (-)-alpha-pinene UHR than in traps with ethanol UHR alone but not in 2004. In 2008, captures were compared among traps baited with eight combinations of ethanol and (-)-a-pinene at both UHR and low release (LR) rates. Release rates for ethanol LR and (-)-alpha-pinene LR were 0.027 and 0.0015 g/d, respectively. (-)-alpha-Pinene UHR and (-)-alpha-pinene LR reduced the attractiveness of ethanol UHR to A. sayi and X. saxeseni. Ethanol UHR was also more attractive than ethanol LR to A. sayi and X. germanus. These findings demonstrate traps baited with ethanol alone are more effective than ethanol plus (-)-alpha-pinene for monitoring ambrosia beetle flight activity in ornamental nurseries. Ethanol release rate is also an important consideration for monitoring purposes.


Assuntos
Comportamento Animal/efeitos dos fármacos , Besouros/efeitos dos fármacos , Controle de Insetos , Monoterpenos/farmacologia , Agricultura , Animais , Monoterpenos Bicíclicos , Etanol
16.
Environ Entomol ; 50(6): 1438-1445, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34415023

RESUMO

1) Many wild bee species interact with soil either as a nesting substrate or material. These soil interactions create a risk of exposure to agrochemicals such as imidacloprid or other neonicotinoid pesticides that can persist in soil for months after application. At the landscape level, concentrations of imidacloprid residue in soil are limited to the immediate treatment area, and thus risks to soil-interacting bees could be low if they avoid contaminated soils. 2) We utilized Osmia lignaria (Say), a solitary cavity nesting bee which collects mud to partition and seal nests, and conducted two laboratory experiments to test whether nesting females select or avoid soils containing various levels of imidacloprid residue. For the first experiment, we assessed behavioral responses of females to treated soil utilizing a choice arena and pairing various choices of soil with imidacloprid residues ranging between 0 and 780 ppb. For the second experiment, we developed a laboratory assay to assess soil selection of actively nesting O. lignaria, by providing choices of contaminated soil between 0 and 100 ppb and 0 and 1,000 ppb to nesting females. 3) We found no evidence that O. lignaria females avoided any level of imidacloprid contamination, even at the highest residue level (1,000 ppb) in both the experiments, which may have implications for risk. The in situ nesting methodology developed in this study has future applications for research on soil or pollen preferences of cavity nesting Osmia species, and potential for breeding of O. lignaria in laboratory.


Assuntos
Himenópteros , Animais , Abelhas , Feminino , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Solo
17.
J Econ Entomol ; 103(4): 1187-95, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20857727

RESUMO

In 2007, we surveyed the alien and endemic scolytine (bark and ambrosia beetles) fauna of northeastern Ohio, and for the most abundant species, we characterized their seasonal activity and response to three semiochemical baits. In total ,5,339 scolytine beetles represented by 47 species and 29 genera were caught in Lindgren funnel traps. Three species constituted 57% of the total catch, including Xylosandrus germanus (Blandford), Tomicus piniperda (L.), and Dryocoetes autographus (Ratzeburg). Of the total captured, 32% of the species and approximately 60% of the individuals were exotic, suggesting that exotic species numerically dominate the scolytine fauna in some urban areas. More native and exotic species were caught in traps baited with ethanol alone than in traps baited with other lures. However, significantly more individuals, especially of T. piniperda, D. autographus, Gnathotrichus materiarius (Fitch), and Ips grandicollis (Eichhoff), and species were caught in traps baited with ethanol plus alpha-pinene than in traps baited with ethanol alone or the exotic Ips lure. This suggests that among these baits, the ethanol plus alpha-pinene baits may be useful in maximizing scolytine beetle catches of these species within this region. Species diversity and richness for both native and exotic beetles was greatest in traps baited with ethanol alone. The period of peak trap capture varied depending upon species: X. germanus was most abundant in traps in mid-May and early-August; T. piniperda in mid-May; D. autographus in early June, mid-July, and mid-September; Anisandrus sayi Hopkins and G. materiarius in mid-May, mid-July, and early September; and I. grandicollis in early April, mid-July, and late September.


Assuntos
Besouros/fisiologia , Feromônios/fisiologia , Animais , Demografia , Ohio , Estações do Ano , Especificidade da Espécie , Fatores de Tempo
18.
Sci Total Environ ; 709: 135158, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-31905577

RESUMO

Energy production systems such as nuclear reactors and coal-burning power plants produce a multitude of waste contaminants including radionuclides, trace elements, and heavy metals. Among invertebrates, much of the effort to understand the impact of these contaminants has focused in aquatic environments, while relatively less attention has been on terrestrial communities. We investigated the effects of trace element and radionuclide contamination on assemblages of beetles that are drawn to vertebrate carrion. Samples were collected from riparian sites at the Savannah River Site in South Carolina to compare trap catches (i.e., measure of relative abundance) of beetles and species diversity along a habitat gradient (0-300 m) away from an aquatic habitat and between uncontaminated and contaminated sites. We collected 17,800 carrion-associated beetles representing 112 species in nine families, which were classified as either scavenger or predatory beetles. Beetle catches and species diversity were generally higher at contaminated than uncontaminated sites. These trends were likely driven by scavenger species, which showed similar patterns between sites, whereas patterns of catches and species diversity were variable between sites for predatory beetles. Species compositions of contaminated and uncontaminated sites were generally distinct, however habitat edges appeared to substantially affect beetle assemblages. Overall, our study suggests carrion beetle assemblages are sensitive to edge effects and may exhibit variable responses to the presence of anthropogenic contaminants or disturbances associated with energy production systems. Such results reflect the inherent variability among individual beetle species, populations, and communities to local environmental conditions, and underscores the need for multi-taxa approach in environmental impact assessments.


Assuntos
Besouros , Animais , Biodiversidade , Ecossistema , Invertebrados , South Carolina
19.
J Chem Ecol ; 35(12): 1384-410, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20066478

RESUMO

From 2000 through 2003 we used semiochemical-baited traps in northeastern Minnesota, USA, to assess changes in assemblages of subcortical forest insects after a catastrophic wind storm in 1999 and subsequent (1999-2000) fuel-reduction activities (salvage-logging and prescribed-burning). We determined the regional efficacy of fifteen semiochemical blends (pheromones and kairomones) as attractants for target and non-target subcortical insect species (Coleoptera: Anthribidae, Buprestidae, Cerambycidae, Cleridae, Cucujidae, Curculionidae, Histeridae, Nemonychidae, Salpingidae, Scolytidae, Tenebrionidae, and Hymenoptera: Siricidae). During the four summers, we trapped 86,471 subcortical insects (143 species) in baited and unbaited Lindgren funnel traps, and 500 beetles (44 species) in baited and unbaited pitfall traps. We report 23 new state collection records of subcortical insects from Minnesota. Trap catches of subcortical insects were greatest in the wind-disturbed areas 2 years after the event, and declined thereafter. Similar trends were observed for subcortical insects in the burned areas. Both wind-disturbance and burning increased the subcortical insect species richness and diversity on the landscape. The subcortical insect species compositions of the salvaged and burned forest areas differed from those of the undisturbed and wind-disturbed areas. Trap catches of subcortical insects in response to semiochemical treatments also varied with year of sampling and land-area treatment. The greatest diversity of subcortical beetle species was in traps baited with attractants for the scolytids, Dendroctonus valens [(+)-α-pinene and (−)-ß-pinene] and Dryocoetes spp. [exo-brevicomin and (−)-α-pinene], perhaps reflecting the generic nature of the baits. The most distinct species compositions were collected in response to the woodborer and Dendroctonus simplex baits, whereas the species compositions in traps with the D. valens and Dryocoetes spp. baits, and the unbaited funnel trap were the most similar. The variation in trap catch with time and across landscapes suggests that the responses of subcortical insects to semiochemicals are more complex than previously appreciated.


Assuntos
Biodiversidade , Besouros/classificação , Feromônios/metabolismo , Árvores , Animais , Besouros/metabolismo
20.
Insects ; 10(4)2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31013809

RESUMO

ederal policies related to forestry and forest health (specifically, insects and diseases) have the potential to affect management practices, terms of international and interstate trade, and long-term sustainability and conservation. Our objectives were to review existing federal policies, the role of federal agencies in managing forest health, and guidance for future policy efforts. Since the 1940s, various federal policies relevant to forest health have been established, and several US Department of Agriculture (USDA) agencies have been empowered to assist with prevention, quarantine, detection, management, and control of insects and diseases. Overall, our review showed that relatively few national policies directly address forest health as a stand-alone objective, as most of them are embedded within forestry bills. Federal funding for forest health issues and the number of personnel dedicated to such issues have declined dramatically for some agencies. Concomitantly, native species continue to gain pestiferous status while non-native species continue to establish and cause impacts in the US. To enhance our ability and capacity to deal with current and future threats, concerted efforts are needed to advocate for both resources and stand-alone policy tools that take seriously the complexity of emerging sustainability challenges in both private and public forestlands.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA