Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Odontology ; 112(2): 408-427, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37792126

RESUMO

Zirconia-based dental implants are in direct contact with living tissues and any improvements in their bioactivity and adhesion to the tissues are highly welcome. In this study, different ratios of barium titanate (BT) were added to 3 mol% yttria-stabilized zirconia (3YSZ) through conventional sintering. The laser-texturing technique was also conducted to improve the biological performance of 3YSZ ceramics. The composition and the surface of the prepared composites were characterized by X-ray diffraction and scanning electron microscopy (SEM), respectively. The roughness and surface wettability of the composites were also measured. Furthermore, MC3T3-E1 pre-osteoblast cells were used for the in vitro experiments. Cell viability was evaluated using a commercial resazurin-based method. Morphology and cellular adhesion were observed using SEM. Based on the results, the laser texturing and the barium titanate content influenced the surface characteristics of the prepared composites. The laser-textured 3YSZ/7 mol% BT composites showed a lower water contact angle compared to the other samples, which indicated superior surface hydrophilicity. The cell viability and cell adhesion of 3YSZ/BT composites increased with the rise in the barium titanate content and laser power. An elongated cell morphology and apatite nucleation were also observed by the BT content. Overall, the laser-treated 3YSZ/5 and 7 mol% BT composites may be promising candidates in hard tissue repair due to their good cell response.


Assuntos
Lasers , Zircônio , Bário , Propriedades de Superfície , Molhabilidade
2.
Odontology ; 111(3): 580-599, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36547737

RESUMO

3 mol% yttria-stabilized zirconia ceramics have been gaining attention as promising restorative materials that are extensively used in dental implant applications. However, implant failure due to bacterial infection and its bioinert surface slow osseointegration in vivo, which are significant issues in clinical applications. In this work, surface modification was achieved using a continuous wave carbon dioxide laser at a wavelength of 10.6 µm in an air atmosphere. Changes in the surface characteristics were evaluated using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and 2D roughness and hardness tests. The bioactivity of the laser-treated samples was studied by examining their behavior when immersed in the SBF solution. The formation of the hydroxyapatite phase on the laser-treated sample was much more uniform than that of its untreated counterparts. The antibacterial properties of surface-treated zirconia ceramics against Streptococcus mutans and Escherichia coli bacteria were rigorously examined. These results indicate that the laser-induced nanoscale grooves significantly improved antibacterial activity by creating hydrophobic surfaces. The cellular response was evaluated for 7 days on microtextures on the zirconia surfaces and an untreated sample with MC3T3-E1 pre-osteoblast cell line cultured under basal conditions. Surface topography was revealed to improve the cellular response with increased metabolic activity compared to the untreated sample and showed modulation of cell morphology for the entire time. These results suggest that laser modification can be an appropriate non-contact method for designing nanoscale microtextures to improve the biological response and antibacterial behavior of zirconia ceramics in restorative dentistry.


Assuntos
Implantes Dentários , Lasers de Gás , Propriedades de Superfície , Materiais Dentários/farmacologia , Materiais Dentários/química , Zircônio/farmacologia , Zircônio/química , Cerâmica/farmacologia , Cerâmica/química , Teste de Materiais , Microscopia Eletrônica de Varredura
3.
J Lasers Med Sci ; 9(4): 249-253, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31119019

RESUMO

Introduction: In this research, low-level helium-neon (He-Ne) laser irradiation effects on monkey kidney cells (Vero cell line) mitosis were studied. Methods: The experiment was carried out on a monkey kidney cell line "Vero (CCL-81)". This is a lineage of cells used in cell cultures and can be used for efficacy and media testing. The monolayer cells were formed on coating glass in a spectral cuvette (20×20×30 mm). The samples divided into two groups. The first groups as irradiated monolayer cells were exposed by a He-Ne laser (PolyaronNPO, L'vov, Ukraine) with λ=632.8 nm, max power density (P) = 10 mW/cm2 , generating linearly polarized and the second groups as the control monolayer cells were located in a cuvette protected by a lightproof screen from the first cuvette and also from the laser exposure. Then, changing functional activity of the monolayer cells, due to the radiation influence on some physical factors were measured. Results: The results showed that low-intensity laser irradiation in the range of visible red could make meaningful changes in the cell division process (the mitosis activity). These changes depend on the power density, exposure time, the presence of a magnetic field, and the duration of time after exposure termination. The stimulatory effects on the cell division within the power density of 1-6 mW/(cm2 ) and exposure time in the range of 1-10 minutes was studied. It is demonstrated that the increase in these parameters (power density and exposure time) leads to destructing the cell division process. Conclusion: The results are useful to identify the molecular mechanisms caused by low-intensity laser effects on the biological activities of the cells. Thus, this study helps to optimize medical laser technology as well as achieving information on the therapeutic effects of low-intensity lasers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA