Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nature ; 610(7932): 519-525, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36261548

RESUMO

Genomic analyses of Neanderthals have previously provided insights into their population history and relationship to modern humans1-8, but the social organization of Neanderthal communities remains poorly understood. Here we present genetic data for 13 Neanderthals from two Middle Palaeolithic sites in the Altai Mountains of southern Siberia: 11 from Chagyrskaya Cave9,10 and 2 from Okladnikov Cave11-making this one of the largest genetic studies of a Neanderthal population to date. We used hybridization capture to obtain genome-wide nuclear data, as well as mitochondrial and Y-chromosome sequences. Some Chagyrskaya individuals were closely related, including a father-daughter pair and a pair of second-degree relatives, indicating that at least some of the individuals lived at the same time. Up to one-third of these individuals' genomes had long segments of homozygosity, suggesting that the Chagyrskaya Neanderthals were part of a small community. In addition, the Y-chromosome diversity is an order of magnitude lower than the mitochondrial diversity, a pattern that we found is best explained by female migration between communities. Thus, the genetic data presented here provide a detailed documentation of the social organization of an isolated Neanderthal community at the easternmost extent of their known range.


Assuntos
Homem de Neandertal , Animais , Feminino , Humanos , Cavernas , Genoma/genética , Hibridização Genética , Homem de Neandertal/genética , Sibéria , DNA Mitocondrial/genética , Cromossomo Y/genética , Masculino , Família , Homozigoto
2.
PLoS Genet ; 19(10): e1010990, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37792893

RESUMO

Genetic triggers for sex determination are frequently co-inherited with other linked genes that may also influence one or more sex-specific phenotypes. To better understand how sex-limited regions evolve and function, we studied a small W chromosome-specific region of the frog Xenopus laevis that contains only three genes (dm-w, scan-w, ccdc69-w) and that drives female differentiation. Using gene editing, we found that the sex-determining function of this region requires dm-w but that scan-w and ccdc69-w are not essential for viability, female development, or fertility. Analysis of mesonephros+gonad transcriptomes during sexual differentiation illustrates masculinization of the dm-w knockout transcriptome, and identifies mostly non-overlapping sets of differentially expressed genes in separate knockout lines for each of these three W-specific gene compared to wildtype sisters. Capture sequencing of almost all Xenopus species and PCR surveys indicate that the female-determining function of dm-w is present in only a subset of species that carry this gene. These findings map out a dynamic evolutionary history of a newly evolved W chromosome-specific genomic region, whose components have distinctive functions that frequently degraded during Xenopus diversification, and evidence the evolutionary consequences of recombination suppression.


Assuntos
Processos de Determinação Sexual , Fatores de Transcrição , Animais , Masculino , Feminino , Xenopus laevis/metabolismo , Fatores de Transcrição/genética , Processos de Determinação Sexual/genética , Genômica , Cromossomos/genética , Cromossomos/metabolismo
3.
Mol Biol Evol ; 37(3): 799-810, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31710681

RESUMO

Phenotypic invariance-the outcome of purifying selection-is a hallmark of biological importance. However, invariant phenotypes might be controlled by diverged genetic systems in different species. Here, we explore how an important and invariant phenotype-the development of sexually differentiated individuals-is controlled in over two dozen species in the frog family Pipidae. We uncovered evidence in different species for 1) an ancestral W chromosome that is not found in many females and is found in some males, 2) independent losses and 3) autosomal segregation of this W chromosome, 4) changes in male versus female heterogamy, and 5) substantial variation among species in recombination suppression on sex chromosomes. We further provide evidence of, and evolutionary context for, the origins of at least seven distinct systems for regulating sex determination among three closely related genera. These systems are distinct in their genomic locations, evolutionary origins, and/or male versus female heterogamy. Our findings demonstrate that the developmental control of sexual differentiation changed via loss, sidelining, and empowerment of a mechanistically influential gene, and offer insights into novel factors that impinge on the diverse evolutionary fates of sex chromosomes.


Assuntos
Pipidae/fisiologia , Cromossomos Sexuais/genética , Animais , Evolução Biológica , Evolução Molecular , Feminino , Deriva Genética , Masculino , Fenótipo , Pipidae/genética , Recombinação Genética , Seleção Genética , Processos de Determinação Sexual , Diferenciação Sexual
4.
BMC Genomics ; 21(1): 432, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32586278

RESUMO

BACKGROUND: The identification of bona fide microbial taxa in microbiomes derived from ancient and historical samples is complicated by the unavoidable mixture between DNA from ante- and post-mortem microbial colonizers. One possibility to distinguish between these sources of microbial DNA is querying for the presence of age-associated degradation patterns typical of ancient DNA (aDNA). The presence of uracils, resulting from cytosine deamination, has been detected ubiquitously in aDNA retrieved from diverse sources, and used as an authentication criterion. Here, we employ a library preparation method that separates molecules that carry uracils from those that do not for a set of samples that includes Neandertal remains, herbarium specimens and archaeological plant remains. RESULTS: We show that sequencing DNA libraries enriched in molecules carrying uracils effectively amplifies age associated degradation patterns in microbial mixtures of ancient and historical origin. This facilitates the discovery of authentic ancient microbial taxa in cases where degradation patterns are difficult to detect due to large sequence divergence in microbial mixtures. Additionally, the relative enrichment of taxa in the uracil enriched fraction can help to identify bona fide ancient microbial taxa that could be missed using a more targeted approach. CONCLUSIONS: Our experiments show, that in addition to its use in enriching authentic endogenous DNA of organisms of interest, the selective enrichment of damaged DNA molecules can be a valuable tool in the discovery of ancient microbial taxa.


Assuntos
Bactérias/classificação , DNA Antigo/análise , Fósseis/microbiologia , Análise de Sequência de DNA/métodos , Uracila/química , Animais , Bactérias/genética , DNA Antigo/química , DNA Bacteriano/genética , Mineração de Dados , Biblioteca Gênica , Metagenômica , Microbiota , Homem de Neandertal/microbiologia , Plantas/microbiologia
5.
J Hum Evol ; 146: 102852, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32781349

RESUMO

Wallace's Line demarcates a biogeographical boundary between the Indomalaya and Australasian ecoregions. Most placental mammalian genera, for example, occur to the west of this line, whereas most marsupial genera occur to the east. However, macaque monkeys are unusual because they naturally occur on both western and eastern sides. To further explore this anomalous distribution, we analyzed 222 mitochondrial genomes from ∼20 macaque species, including new genomes from 60 specimens. These comprise a population sampling of most Sulawesi macaques, Macaca fascicularis (long-tailed macaques) specimens that were collected by Alfred R. Wallace and specimens that were recovered during archaeological excavations at Liang Bua, a cave on the Indonesian island of Flores. In M. fascicularis, three mitochondrial lineages span the southernmost portion of Wallace's Line between Bali and Lombok, and divergences within these lineages are contemporaneous with, and possibly mediated by, past dispersals of modern human populations. Near the central portion of Wallace's Line between Borneo and Sulawesi, a more ancient dispersal of macaques from mainland Asia to Sulawesi preceded modern human colonization, which was followed by rapid dispersal of matrilines and was subsequently influenced by recent interspecies hybridization. In contrast to previous studies, we find no strong signal of recombination in most macaque mitochondrial genomes. These findings further characterize macaque evolution before and after modern human dispersal throughout Southeast Asia and point to possible effects on biodiversity of ancient human cultural diasporas.


Assuntos
Distribuição Animal , Genoma Mitocondrial , Migração Humana , Macaca/fisiologia , Animais , Humanos , Indonésia , Macaca/genética , Filipinas
6.
Nucleic Acids Res ; 45(10): e79, 2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28119419

RESUMO

DNA library preparation for high-throughput sequencing of genomic DNA usually involves ligation of adapters to double-stranded DNA fragments. However, for highly degraded DNA, especially ancient DNA, library preparation has been found to be more efficient if each of the two DNA strands are converted into library molecules separately. We present a new method for single-stranded library preparation, ssDNA2.0, which is based on single-stranded DNA ligation with T4 DNA ligase utilizing a splinter oligonucleotide with a stretch of random bases hybridized to a 3΄ biotinylated donor oligonucleotide. A thorough evaluation of this ligation scheme shows that single-stranded DNA can be ligated to adapter oligonucleotides in higher concentration than with CircLigase (an RNA ligase that was previously chosen for end-to-end ligation in single-stranded library preparation) and that biases in ligation can be minimized when choosing splinters with 7 or 8 random nucleotides. We show that ssDNA2.0 tolerates higher quantities of input DNA than CircLigase-based library preparation, is less costly and better compatible with automation. We also provide an in-depth comparison of library preparation methods on degraded DNA from various sources. Most strikingly, we find that single-stranded library preparation increases library yields from tissues stored in formalin for many years by several orders of magnitude.


Assuntos
DNA Ligases/genética , DNA de Cadeia Simples/genética , Biblioteca Gênica , Animais , Osso e Ossos/química , DNA/genética , DNA/metabolismo , DNA Ligases/metabolismo , Primers do DNA/química , Primers do DNA/metabolismo , DNA de Cadeia Simples/metabolismo , Fósseis , Sequenciamento de Nucleotídeos em Larga Escala , Cavalos , Humanos , Fígado/química , Hibridização de Ácido Nucleico , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Suínos
7.
Proc Natl Acad Sci U S A ; 112(51): 15696-700, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26630009

RESUMO

Denisovans, a sister group of Neandertals, have been described on the basis of a nuclear genome sequence from a finger phalanx (Denisova 3) found in Denisova Cave in the Altai Mountains. The only other Denisovan specimen described to date is a molar (Denisova 4) found at the same site. This tooth carries a mtDNA sequence similar to that of Denisova 3. Here we present nuclear DNA sequences from Denisova 4 and a morphological description, as well as mitochondrial and nuclear DNA sequence data, from another molar (Denisova 8) found in Denisova Cave in 2010. This new molar is similar to Denisova 4 in being very large and lacking traits typical of Neandertals and modern humans. Nuclear DNA sequences from the two molars form a clade with Denisova 3. The mtDNA of Denisova 8 is more diverged and has accumulated fewer substitutions than the mtDNAs of the other two specimens, suggesting Denisovans were present in the region over an extended period. The nuclear DNA sequence diversity among the three Denisovans is comparable to that among six Neandertals, but lower than that among present-day humans.


Assuntos
Núcleo Celular/genética , DNA Mitocondrial/química , Homem de Neandertal/genética , Animais , Sequência de Bases , Evolução Molecular , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
8.
Genome Res ; 24(9): 1543-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25081630

RESUMO

Contamination by present-day human and microbial DNA is one of the major hindrances for large-scale genomic studies using ancient biological material. We describe a new molecular method, U selection, which exploits one of the most distinctive features of ancient DNA--the presence of deoxyuracils--for selective enrichment of endogenous DNA against a complex background of contamination during DNA library preparation. By applying the method to Neanderthal DNA extracts that are heavily contaminated with present-day human DNA, we show that the fraction of useful sequence information increases ∼ 10-fold and that the resulting sequences are more efficiently depleted of human contamination than when using purely computational approaches. Furthermore, we show that U selection can lead to a four- to fivefold increase in the proportion of endogenous DNA sequences relative to those of microbial contaminants in some samples. U selection may thus help to lower the costs for ancient genome sequencing of nonhuman samples also.


Assuntos
Nucleotídeos de Desoxiuracil/química , Genoma , Homem de Neandertal/genética , Análise de Sequência de DNA/métodos , Animais , Sequência de Bases , Contaminação por DNA , Nucleotídeos de Desoxiuracil/genética , Humanos , Dados de Sequência Molecular , Sensibilidade e Especificidade
10.
Proc Natl Acad Sci U S A ; 110(39): 15758-63, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-24019490

RESUMO

Although an inverse relationship is expected in ancient DNA samples between the number of surviving DNA fragments and their length, ancient DNA sequencing libraries are strikingly deficient in molecules shorter than 40 bp. We find that a loss of short molecules can occur during DNA extraction and present an improved silica-based extraction protocol that enables their efficient retrieval. In combination with single-stranded DNA library preparation, this method enabled us to reconstruct the mitochondrial genome sequence from a Middle Pleistocene cave bear (Ursus deningeri) bone excavated at Sima de los Huesos in the Sierra de Atapuerca, Spain. Phylogenetic reconstructions indicate that the U. deningeri sequence forms an early diverging sister lineage to all Western European Late Pleistocene cave bears. Our results prove that authentic ancient DNA can be preserved for hundreds of thousand years outside of permafrost. Moreover, the techniques presented enable the retrieval of phylogenetically informative sequences from samples in which virtually all DNA is diminished to fragments shorter than 50 bp.


Assuntos
DNA/genética , Genoma Mitocondrial/genética , Ursidae/genética , Animais , Sequência de Bases , Cavernas , DNA/isolamento & purificação , Dados de Sequência Molecular , Filogenia , Fatores de Tempo
11.
Nat Protoc ; 15(8): 2279-2300, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32612278

RESUMO

It has been shown that highly fragmented DNA is most efficiently converted into DNA libraries for sequencing if both strands of the DNA fragments are processed independently. We present an updated protocol for library preparation from single-stranded DNA, which is based on the splinted ligation of an adapter oligonucleotide to the 3' ends of single DNA strands, the synthesis of a complementary strand using a DNA polymerase and the addition of a 5' adapter via blunt-end ligation. The efficiency of library preparation is determined individually for each sample using a spike-in oligonucleotide. The whole workflow, including library preparation, quantification and amplification, requires two work days for up to 16 libraries. Alternatively, we provide documentation and electronic protocols enabling automated library preparation of 96 samples in parallel on a Bravo NGS Workstation (Agilent Technologies). After library preparation, molecules with uninformative short inserts (shorter than ~30-35 base pairs) can be removed by polyacrylamide gel electrophoresis if desired.


Assuntos
DNA Antigo , DNA de Cadeia Simples/genética , Biblioteca Gênica , Análise de Sequência de DNA/métodos , Automação , Sequência de Bases
12.
PLoS One ; 15(12): e0244824, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33382830

RESUMO

SARS-CoV-2 causes substantial morbidity and mortality in elderly and immunocompromised individuals, particularly in retirement homes, where transmission from asymptomatic staff and visitors may introduce the infection. Here we present a cheap and fast screening method based on direct RT-qPCR to detect SARS-CoV-2 in single or pooled gargle lavages ("mouthwashes"). This method detects individuals with large viral loads (Ct≤29) and we use it to test all staff at a nursing home daily over a period of three weeks in order to reduce the risk that the infection penetrates the facility. This or similar approaches can be implemented to protect hospitals, nursing homes and other institutions in this and future viral epidemics.


Assuntos
Teste de Ácido Nucleico para COVID-19 , COVID-19 , Programas de Rastreamento , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/genética , Humanos
13.
Methods Mol Biol ; 1963: 75-83, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30875046

RESUMO

Genomic library preparation from highly degraded DNA is more efficient when library molecules are prepared separately from the complementary strands of DNA fragments. We describe a protocol in which libraries are constructed from single DNA strands in a three-step procedure: single-stranded ligation of the first adapter with T4 DNA ligase in the presence of a splinter oligonucleotide, copying of the DNA strand with a proofreading polymerase, and blunt-end ligation of the second double-stranded adapter with T4 DNA ligase.


Assuntos
DNA Antigo/análise , DNA de Cadeia Simples/genética , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , DNA Antigo/química , DNA Antigo/isolamento & purificação
14.
PLoS One ; 14(9): e0220892, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31509539

RESUMO

A comprehensive, accurate, and revisable alpha taxonomy is crucial for biodiversity studies, but is challenging when data from reference specimens are difficult to collect or observe. However, recent technological advances can overcome some of these challenges. To illustrate this, we used modern approaches to tackle a centuries-old taxonomic enigma presented by Fraser's Clawed Frog, Xenopus fraseri, including whether X. fraseri is different from other species, and if so, where it is situated geographically and phylogenetically. To facilitate these inferences, we used high-resolution techniques to examine morphological variation, and we generated and analyzed complete mitochondrial genome sequences from all Xenopus species, including >150-year-old type specimens. Our results demonstrate that X. fraseri is indeed distinct from other species, firmly place this species within a phylogenetic context, and identify its minimal geographic distribution in northern Ghana and northern Cameroon. These data also permit novel phylogenetic resolution into this intensively studied and biomedically important group. Xenopus fraseri was formerly thought to be a rainforest endemic placed alongside species in the amieti species group; in fact this species occurs in arid habitat on the borderlands of the Sahel, and is the smallest member of the muelleri species group. This study illustrates that the taxonomic enigma of Fraser's frog was a combined consequence of sparse collection records, interspecies conservation and intraspecific polymorphism in external anatomy, and type specimens with unusual morphology.


Assuntos
Biodiversidade , Xenopus/classificação , Animais , Sequência Conservada , Código de Barras de DNA Taxonômico , Evolução Molecular , Genoma Mitocondrial , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Modelos Anatômicos , Filogenia , Microtomografia por Raio-X , Xenopus/anatomia & histologia
15.
Sci Adv ; 3(7): e1700186, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28695206

RESUMO

The presence of Neandertals in Europe and Western Eurasia before the arrival of anatomically modern humans is well supported by archaeological and paleontological data. In contrast, fossil evidence for Denisovans, a sister group of Neandertals recently identified on the basis of DNA sequences, is limited to three specimens, all of which originate from Denisova Cave in the Altai Mountains (Siberia, Russia). We report the retrieval of DNA from a deciduous lower second molar (Denisova 2), discovered in a deep stratigraphic layer in Denisova Cave, and show that this tooth comes from a female Denisovan individual. On the basis of the number of "missing substitutions" in the mitochondrial DNA determined from the specimen, we find that Denisova 2 is substantially older than two of the other Denisovans, reinforcing the view that Denisovans were likely to have been present in the vicinity of Denisova Cave over an extended time period. We show that the level of nuclear DNA sequence diversity found among Denisovans is within the lower range of that of present-day human populations.

16.
Biotechniques ; 59(2): 87-93, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26260087

RESUMO

Although great progress has been made in improving methods for generating DNA sequences from ancient biological samples, many, if not most, samples are still not amenable for analyses due to overwhelming contamination with microbial or modern human DNA. Here we explore different DNA decontamination procedures for ancient bones and teeth for use prior to DNA library preparation and high-throughput sequencing. Two procedures showed promising results: (i) the release of surface-bound DNA by phosphate buffer and (ii) the removal of DNA contamination by sodium hypochlorite treatment. Exposure to phosphate removes on average 64% of the microbial DNA from bone powder but only 37% of the endogenous DNA (from the organism under study), increasing the percentage of informative sequences by a factor of two on average. An average 4.6-fold increase, in one case reaching 24-fold, is achieved by sodium hypochlorite treatment, albeit at the expense of destroying 63% of the endogenous DNA preserved in the bone. While both pretreatment methods described here greatly reduce the cost of genome sequencing from ancient material due to efficient depletion of microbial DNA, we find that the removal of human DNA contamination remains a challenging problem.


Assuntos
Contaminação por DNA , Fósseis , Paleodontologia , Bactérias , Osso e Ossos , Descontaminação/métodos , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Paleodontologia/métodos , Dente
17.
Nat Commun ; 5: 5117, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25283608

RESUMO

Of all obligate intracellular bacteria, Wolbachia is probably the most common. In general, Wolbachia are either widespread, opportunistic reproductive parasites of arthropods or essential mutualists in a single group of filarial nematodes, including many species of medical significance. To date, a robust phylogenetic backbone of Wolbachia is lacking and consequently, many Wolbachia-related phenomena cannot be discussed in a broader evolutionary context. Here we present the first comprehensive phylogenomic analysis of Wolbachia supergroup relationships based on new whole-genome-shotgun data. Our results suggest that Wolbachia has switched between its two major host groups at least twice. The ability of some arthropod-infecting Wolbachia to universally infect and to adapt to a broad range of hosts quickly is restricted to a single monophyletic lineage (containing supergroups A and B). Thus, the currently observable pandemic has likely a single evolutionary origin and is unique within the radiation of Wolbachia strains.


Assuntos
Genoma Bacteriano , Filogenia , Wolbachia/genética , Algoritmos , Animais , Artrópodes , Proteínas de Bactérias/genética , Análise por Conglomerados , Evolução Molecular , Genômica , Funções Verossimilhança , Reprodutibilidade dos Testes , Simbiose/genética , Wolbachia/metabolismo
18.
Nat Protoc ; 8(4): 737-48, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23493070

RESUMO

This protocol describes a method for converting short single-stranded and double-stranded DNA into libraries compatible with high-throughput sequencing using Illumina technology. This method has primarily been developed to improve sequence retrieval from ancient DNA, but it is also applicable to the sequencing of short or degraded DNA from other sources, and it can also be used for sequencing oligonucleotides. Single-stranded library preparation is performed by ligating a biotinylated adapter oligonucleotide to the 3' ends of heat-denatured DNA. The resulting strands are then immobilized on streptavidin-coated beads and copied with a polymerase. A second adapter is attached by blunt-end ligation, and library preparation is completed by PCR amplification. We estimate that intact DNA strands are recovered in the library with ∼50% efficiency. Libraries can be generated from up to 12 DNA or oligonucleotide samples in parallel within 2 d.


Assuntos
DNA de Cadeia Simples/química , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Biotinilação , Primers do DNA , Reação em Cadeia da Polimerase/métodos , Análise de Sequência de DNA
19.
Science ; 338(6104): 222-6, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-22936568

RESUMO

We present a DNA library preparation method that has allowed us to reconstruct a high-coverage (30×) genome sequence of a Denisovan, an extinct relative of Neandertals. The quality of this genome allows a direct estimation of Denisovan heterozygosity indicating that genetic diversity in these archaic hominins was extremely low. It also allows tentative dating of the specimen on the basis of "missing evolution" in its genome, detailed measurements of Denisovan and Neandertal admixture into present-day human populations, and the generation of a near-complete catalog of genetic changes that swept to high frequency in modern humans since their divergence from Denisovans.


Assuntos
Variação Genética , Genoma Humano/genética , Heterozigoto , Homem de Neandertal/genética , Alelos , Animais , Sequência de Bases , Fósseis , Fluxo Gênico , Biblioteca Gênica , Humanos , Dados de Sequência Molecular , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA