RESUMO
The elastoplastic behavior of sodium silicate glasses is studied at different scales as a function of composition and pressure, with the help of quasistatic atomistic simulations. The samples are first compressed and then sheared at constant pressure to calculate yield strength and permanent plastic deformations. Changes occurring in the global response are then compared to the analysis of local plastic rearrangements and strain heterogeneities. It is shown that the plastic response results from the succession of well-identified localized irreversible deformations occurring in a nanometer-size area. The size and the number of these local rearrangements, as well as the amount of internal deviatoric and volumetric plastic deformation, are sensitive to the composition and to the pressure. In the early stages of the deformation, plastic rearrangements are driven by sodium mobility. Consequently, the elastic yield strength decreases when the sodium content increases, and the same when pressure increases. Finally, good correlation was found between global and local stress-strain relationships, reinforcing again the role of sodium ions as local initiators of the plastic behavior observed at larger scales.
RESUMO
We study a calcium aluminosilicate glass of composition (SiO(2))(0.67)-(Al(2)O(3))(0.12)-(CaO)(0.21) by means of molecular-dynamics simulations, using a potential made of two-body and three-body interactions. In order to prepare small samples that can subsequently be studied by first principles, the finite size effects on the liquid dynamics and on the glass structural properties are investigated. We find that finite size effects affect the Si-O-Si and Si-O-Al angular distributions, the first peaks of the Si-O, Al-O, and Ca-O pair correlation functions, the Ca coordination, and the oxygen atoms' environment in the smallest system (100 atoms). We give evidence that these finite size effects can be directly attributed to the use of three-body interactions.