Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 513(7518): 375-381, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25186727

RESUMO

Cichlid fishes are famous for large, diverse and replicated adaptive radiations in the Great Lakes of East Africa. To understand the molecular mechanisms underlying cichlid phenotypic diversity, we sequenced the genomes and transcriptomes of five lineages of African cichlids: the Nile tilapia (Oreochromis niloticus), an ancestral lineage with low diversity; and four members of the East African lineage: Neolamprologus brichardi/pulcher (older radiation, Lake Tanganyika), Metriaclima zebra (recent radiation, Lake Malawi), Pundamilia nyererei (very recent radiation, Lake Victoria), and Astatotilapia burtoni (riverine species around Lake Tanganyika). We found an excess of gene duplications in the East African lineage compared to tilapia and other teleosts, an abundance of non-coding element divergence, accelerated coding sequence evolution, expression divergence associated with transposable element insertions, and regulation by novel microRNAs. In addition, we analysed sequence data from sixty individuals representing six closely related species from Lake Victoria, and show genome-wide diversifying selection on coding and regulatory variants, some of which were recruited from ancient polymorphisms. We conclude that a number of molecular mechanisms shaped East African cichlid genomes, and that amassing of standing variation during periods of relaxed purifying selection may have been important in facilitating subsequent evolutionary diversification.


Assuntos
Ciclídeos/classificação , Ciclídeos/genética , Evolução Molecular , Especiação Genética , Genoma/genética , África Oriental , Animais , Elementos de DNA Transponíveis/genética , Duplicação Gênica/genética , Regulação da Expressão Gênica/genética , Genômica , Lagos , MicroRNAs/genética , Filogenia , Polimorfismo Genético/genética
2.
Mol Ecol ; 25(24): 6143-6161, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27452499

RESUMO

How variation in the genome translates into biological diversity and new species originate has endured as the mystery of mysteries in evolutionary biology. African cichlid fishes are prime model systems to address speciation-related questions for their remarkable taxonomic and phenotypic diversity, and the possible role of gene flow in this process. Here, we capitalize on genome sequencing and phylogenomic analyses to address the relative impacts of incomplete lineage sorting, introgression and hybrid speciation in the Neolamprologus savoryi-complex (the 'Princess cichlids') from Lake Tanganyika. We present a time-calibrated species tree based on whole-genome sequences and provide strong evidence for incomplete lineage sorting in the early phases of diversification and multiple introgression events affecting different stages. Importantly, we find that the Neolamprologus chromosomes show centre-to-periphery biases in nucleotide diversity, sequence divergence, GC content, incomplete lineage sorting and rates of introgression, which are likely modulated by recombination density and linked selection. The detection of heterogeneous genomic landscapes has strong implications on the genomic mechanisms involved in speciation. Collinear chromosomal regions can be protected from gene flow and harbour incompatibility genes if they reside in lowly recombining regions, and coupling can evolve between nonphysically linked genomic regions (chromosome centres in particular). Simultaneously, higher recombination towards chromosome peripheries makes these more dynamic, evolvable regions where adaptation polymorphisms have a fertile ground. Hence, differences in genome architecture could explain the levels of taxonomic and phenotypic diversity seen in taxa with collinear genomes and might have contributed to the spectacular cichlid diversity observed today.


Assuntos
Ciclídeos/classificação , Especiação Genética , Animais , Genoma , Genômica , Lagos , Fenótipo , Tanzânia
3.
BMC Evol Biol ; 15: 111, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-26066794

RESUMO

BACKGROUND: The evolution of species boundaries and the relative impact of selection and gene flow on genomic divergence are best studied in populations and species pairs exhibiting various levels of divergence along the speciation continuum. We studied species boundaries in Iberian barbels, Barbus and Luciobarbus, a system of populations and species spanning a wide degree of genetic relatedness, as well as geographic distribution and range overlap. We jointly analyze multiple types of molecular markers and morphological traits to gain a comprehensive perspective on the nature of species boundaries in these cyprinid fishes. RESULTS: Intraspecific molecular and morphological differentiation is visible among many populations. Genomes of all sympatric species studied are porous to gene flow, even if they are not sister species. Compared to their allopatric counterparts, sympatric representatives of different species share alleles and show an increase in all measures of nucleotide polymorphism (S, Hd, K, π and θ). High molecular diversity is particularly striking in L. steindachneri from the Tejo and Guadiana rivers, which co-varies with other sympatric species. Interestingly, different nuclear markers introgress across species boundaries at various levels, with distinct impacts on population trees. As such, some loci exhibit limited introgression and population trees resemble the presumed species tree, while alleles at other loci introgress more freely and population trees reflect geographic affinities and interspecific gene flow. Additionally, extent of introgression decreases with increasing genetic divergence in hybridizing species pairs. CONCLUSIONS: We show that reproductive isolation in Iberian Barbus and Luciobarbus is not complete and species boundaries are semi-permeable to (some) gene flow, as different species (including non-sister) are exchanging genes in areas of sympatry. Our results support a speciation-with-gene-flow scenario with heterogeneous barriers to gene flow across the genome, strengthening with genetic divergence. This is consistent with observations coming from other systems and supports the notion that speciation is not instantaneous but a gradual process, during which different species are still able to exchange some genes, while selection prevents gene flow at other loci. We also provide evidence for a hybrid origin of a barbel ecotype, L. steindachneri, suggesting that ecology plays a key role in species coexistence and hybridization in Iberian barbels. This ecotype with intermediate, yet variable, molecular, morphological, trophic and ecological characteristics is the local product of introgressive hybridization of L. comizo with up to three different species (with L. bocagei in the Tejo, with L. microcephalus and L. sclateri in the Guadiana). In spite of the homogenizing effects of ongoing gene flow, species can still be discriminated using a combination of morphological and molecular markers. Iberian barbels are thus an ideal system for the study of species boundaries, since they span a wide range of genetic divergences, with diverse ecologies and degrees of sympatry.


Assuntos
Cyprinidae/classificação , Fluxo Gênico , Especiação Genética , Animais , Evolução Biológica , Cyprinidae/anatomia & histologia , Cyprinidae/genética , Portugal , Isolamento Reprodutivo , Espanha , Simpatria
4.
Mol Phylogenet Evol ; 89: 115-29, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25882833

RESUMO

Previous studies have given substantial attention to external factors that affect the distribution and diversification of freshwater fish in Europe and North America, in particular Pleistocene and Holocene glacial cycles. In the present paper we examine sequence variation at one mitochondrial and four nuclear loci (over 3 kbp) from populations sampled across several drainages of all species of Barbus known to inhabit Italian freshwaters (introduced B. barbus and native B. balcanicus, B. caninus, B. plebejus and B. tyberinus). By comparing species with distinct ecological preferences (rheophilic and fluvio-lacustrine) and using a fossil-calibrated phylogeny we gained considerable insight about the intrinsic and extrinsic processes shaping barbel distribution, population structure and speciation. We found that timescales of Italian barbel diversification are older than previously thought, starting in the Early Miocene, and involving local and regional tectonism and basin paleo-evolution rather than Pleistocene glacial cycles. Conversely, more recent environmental factors associated with glaciation-deglaciation cycles have influenced species distributions. These events had a more marked impact on fluvio-lacustrine than on rheophilic species by means of river confluence at low sea levels. We show that genetic structure is influenced by species ecology: populations of small rheophilic species inhabiting upper river stretches of large basins are less connected and more differentiated than large fluvio-lacustrine species that inhabit lower river courses. We report the existence of both natural and human-induced interspecific gene flow, which could have great impacts on the evolution and persistence of species involved. In addition, we provide evidence that B. tyberinus is genetically distinguishable from all other Italian taxa and that its morphological similarity to B. plebejus and intermediacy with B. caninus are best explained by recent common ancestry and similar ecology with the former, rather than by hybrid origin involving these two species as previously hypothesized.


Assuntos
Cyprinidae/genética , Especiação Genética , Filogenia , Análise Espaço-Temporal , Animais , Cyprinidae/fisiologia , Ecossistema , Evolução Molecular , Fósseis , Fluxo Gênico , Marcadores Genéticos/genética , Variação Genética/genética , Genética Populacional , Hibridização Genética , Camada de Gelo , Itália , Densidade Demográfica , Reprodutibilidade dos Testes , Rios , Especificidade da Espécie , Fatores de Tempo
5.
J Hered ; 102(5): 617-21, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21705490

RESUMO

Thirty paralog-specific primers were developed, following an intron-primed exon-crossing strategy, for S7 and growth hormone genes in Barbus (subgenera Barbus and Luciobarbus). We found that paralog-specific amplification requires the use of only one paralog-specific primer, allowing their simultaneous use with universal exon-primed intron-crossing primers of broad taxonomic applicability. This hybrid annealing strategy guarantees both specificity and generality of amplification reactions and represents a step forward in the amplification of duplicated nuclear loci in polyploid organisms and members of multigene families. Assays of several representative taxa identified high levels of segregating single nucleotide polymorphisms (SNPs) and nucleotide diversity within each of these subgenera. Additionally, several insertions-deletions (indels) that are diagnostic across species are found in intronic regions. Therefore, these primers provide a reliable source of valuable nuclear SNP and indel data for population and species level studies of barbels, such as applied conservation and basic evolutionary studies.


Assuntos
Núcleo Celular/genética , Cyprinidae/genética , Primers do DNA , Loci Gênicos , Reação em Cadeia da Polimerase , Tetraploidia , Animais , Ordem dos Genes , Polimorfismo de Nucleotídeo Único/genética
6.
Mol Ecol ; 18(15): 3240-55, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19573028

RESUMO

A diversity of evolutionary processes can be responsible for generating and maintaining biodiversity. Molecular markers were used to investigate the influence of Plio-Pleistocene climatic oscillations on the evolutionary history of taxa restricted to the freshwaters of a classical glacial refugium. Population genetic, phylogenetic and phylogeographical methods allowed the inference of temporal dynamics of cladogenesis and processes shaping present-day genetic constitution of Barbus sclateri, a polytypic taxon found in several independent river drainages in southern Iberian Peninsula. Results from different analyses consistently indicate several range expansions, high levels of allopatric fragmentation, and admixture following secondary contacts throughout its evolutionary history. Using a Bayesian demographical coalescent model on mitochondrial DNA sequences calibrated with fossil evidence, all cladogenetic events within B. sclateri are inferred to have occurred during the Pleistocene and were probably driven by environmental factors. Our results suggest that glaciation cycles did not inhibit cladogenesis and probably interacted with regional geomorphology to promote diversification. We conclude that this polytypic taxon is a species complex that recently diversified in allopatry, and that Pleistocene glaciation-deglaciation cycles probably contributed to the generation of biological diversity in a classical glacial refugium with high endemicity.


Assuntos
Cyprinidae/genética , Evolução Molecular , Especiação Genética , Filogenia , Animais , Cyprinidae/classificação , DNA Mitocondrial/genética , Marcadores Genéticos , Variação Genética , Genética Populacional , Geografia , Isoenzimas/genética , Modelos Genéticos , Análise de Sequência de DNA
7.
Evol Lett ; 1(5): 269-278, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30283655

RESUMO

Our understanding of animal communication has been largely driven by advances in theory since empirical evidence has been difficult to obtain. Costly signaling theory became the dominant paradigm explaining the evolution of honest signals, according to which communication reliability relies on differential costs imposed on signalers to distinguish animals of different quality. On the other hand, mathematical models disagree on the source of costs at the communication equilibrium. Here, we present an empirical framework to study the evolution of honest signals that generates predictions on the form, function, and sources of reliability of visual signals. We test these predictions on the facial color patterns of the cooperatively breeding Princess of Burundi cichlid, Neolamprologus brichardi. Using theoretical visual models and behavioral experiments we show that these patterns possess stable chromatic properties for efficient transmission in the aquatic environment, while dynamic changes in signal luminance are used by the fish to communicate switches in aggressive intent. By manipulating signal into out-of-equilibrium expression and simulating a cheater invasion, we demonstrate that social costs (receiver retaliation) promote the honesty of this dynamic conventional signal. By directly probing the sender of a signal in real time, social selection is likely to be the mechanism of choice shaping the evolution of inexpensive, yet reliable context-dependent social signals in general.

8.
Science ; 362(6413): 396-397, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30361357

Assuntos
Peixes , Animais
9.
Curr Biol ; 22(22): R956-8, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23174298

RESUMO

Rapid speciation has fascinated biologists for a long time. A recent study shows that ecological opportunity and sex-biased color differences increase the likelihood of speciation in African cichlid fishes.


Assuntos
Ciclídeos/genética , Especiação Genética , Adaptação Fisiológica , Animais , Ciclídeos/classificação , Ecossistema , Feminino , Masculino , Modelos Biológicos , Fatores Sexuais , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA