Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Glob Chang Biol ; 30(1): e17013, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37994377

RESUMO

Lakes worldwide are affected by multiple stressors, including climate change. This includes massive loading of both nutrients and humic substances to lakes during extreme weather events, which also may disrupt thermal stratification. Since multi-stressor effects vary widely in space and time, their combined ecological impacts remain difficult to predict. Therefore, we combined two consecutive large enclosure experiments with a comprehensive time-series and a broad-scale field survey to unravel the combined effects of storm-induced lake browning, nutrient enrichment and deep mixing on phytoplankton communities, focusing particularly on potentially toxic cyanobacterial blooms. The experimental results revealed that browning counteracted the stimulating effect of nutrients on phytoplankton and caused a shift from phototrophic cyanobacteria and chlorophytes to mixotrophic cryptophytes. Light limitation by browning was identified as the likely mechanism underlying this response. Deep-mixing increased microcystin concentrations in clear nutrient-enriched enclosures, caused by upwelling of a metalimnetic Planktothrix rubescens population. Monitoring data from a 25-year time-series of a eutrophic lake and from 588 northern European lakes corroborate the experimental results: Browning suppresses cyanobacteria in terms of both biovolume and proportion of the total phytoplankton biovolume. Both the experimental and observational results indicated a lower total phosphorus threshold for cyanobacterial bloom development in clearwater lakes (10-20 µg P L-1 ) than in humic lakes (20-30 µg P L-1 ). This finding provides management guidance for lakes receiving more nutrients and humic substances due to more frequent extreme weather events.


Assuntos
Cianobactérias , Fitoplâncton , Lagos/microbiologia , Substâncias Húmicas , Eutrofização , Nutrientes , Fósforo/análise , China
2.
Proc Natl Acad Sci U S A ; 115(11): 2670-2675, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29483268

RESUMO

Traces of life are nearly ubiquitous on Earth. However, a central unresolved question is whether these traces always indicate an active microbial community or whether, in extreme environments, such as hyperarid deserts, they instead reflect just dormant or dead cells. Although microbial biomass and diversity decrease with increasing aridity in the Atacama Desert, we provide multiple lines of evidence for the presence of an at times metabolically active, microbial community in one of the driest places on Earth. We base this observation on four major lines of evidence: (i) a physico-chemical characterization of the soil habitability after an exceptional rain event, (ii) identified biomolecules indicative of potentially active cells [e.g., presence of ATP, phospholipid fatty acids (PLFAs), metabolites, and enzymatic activity], (iii) measurements of in situ replication rates of genomes of uncultivated bacteria reconstructed from selected samples, and (iv) microbial community patterns specific to soil parameters and depths. We infer that the microbial populations have undergone selection and adaptation in response to their specific soil microenvironment and in particular to the degree of aridity. Collectively, our results highlight that even the hyperarid Atacama Desert can provide a habitable environment for microorganisms that allows them to become metabolically active following an episodic increase in moisture and that once it decreases, so does the activity of the microbiota. These results have implications for the prospect of life on other planets such as Mars, which has transitioned from an earlier wetter environment to today's extreme hyperaridity.


Assuntos
Bactérias/isolamento & purificação , Ecossistema , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Biodiversidade , Clima Desértico , Solo/química , América do Sul
3.
Environ Microbiol ; 21(1): 34-49, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30246449

RESUMO

Non-predatory mortality of zooplankton provides an abundant, yet, little studied source of high quality labile organic matter (LOM) in aquatic ecosystems. Using laboratory microcosms, we followed the decomposition of organic carbon of fresh 13 C-labelled Daphnia carcasses by natural bacterioplankton. The experimental setup comprised blank microcosms, that is, artificial lake water without any organic matter additions (B), and microcosms either amended with natural humic matter (H), fresh Daphnia carcasses (D) or both, that is, humic matter and Daphnia carcasses (HD). Most of the carcass carbon was consumed and respired by the bacterial community within 15 days of incubation. A shift in the bacterial community composition shaped by labile carcass carbon and by humic matter was observed. Nevertheless, we did not observe a quantitative change in humic matter degradation by heterotrophic bacteria in the presence of LOM derived from carcasses. However, carcasses were the main factor driving the bacterial community composition suggesting that the presence of large quantities of dead zooplankton might affect the carbon cycling in aquatic ecosystems. Our results imply that organic matter derived from zooplankton carcasses is efficiently remineralized by a highly specific bacterial community, but does not interfere with the bacterial turnover of more refractory humic matter.


Assuntos
Bactérias/metabolismo , Ciclo do Carbono , Daphnia/química , Água Doce/microbiologia , Zooplâncton/química , Animais , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Carbono/metabolismo , Daphnia/metabolismo , Daphnia/microbiologia , Ecossistema , Processos Heterotróficos , Zooplâncton/metabolismo , Zooplâncton/microbiologia
4.
Int J Syst Evol Microbiol ; 64(Pt 2): 522-527, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24108325

RESUMO

A novel strain of methanogenic archaea, designated MC-20(T), was isolated from the anoxic sediment of a subsurface lake in Movile Cave, Mangalia, Romania. Cells were non-motile, Gram-stain-negative rods 3.5-4.0 µm in length and 0.6-0.7 µm in width, and occurred either singly or in short chains. Strain MC-20(T) was able to utilize H2/CO2, formate, 2-propanol and 2-butanol as substrate, but not acetate, methanol, ethanol, dimethyl sulfide, monomethylamine, dimethylamine or trimethylamine. Neither trypticase peptone nor yeast extract was required for growth. The major membrane lipids of strain MC-20(T) were archaeol phosphatidylethanolamine and diglycosyl archaeol, while archaeol phosphatidylinositol and glycosyl archaeol were present only in minor amounts. Optimal growth was observed at 33 °C, pH 7.4 and 0.08 M NaCl. Based on phylogenetic analysis of 16S rRNA gene sequences, strain MC-20(T) was closely affiliated with Methanobacterium oryzae FPi(T) (similarity 97.1%) and Methanobacterium lacus 17A1(T) (97.0%). The G+C content of the genomic DNA was 33.0 mol%. Based on phenotypic and genotypic differences, strain MC-20(T) was assigned to a novel species of the genus Methanobacterium for which the name Methanobacterium movilense sp. nov. is proposed. The type strain is MC-20(T) ( = DSM 26032(T) = JCM 18470(T)).


Assuntos
Cavernas/microbiologia , Sedimentos Geológicos/microbiologia , Methanobacterium/classificação , Filogenia , Composição de Bases , DNA Arqueal/genética , Lagos/microbiologia , Methanobacterium/genética , Methanobacterium/isolamento & purificação , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Romênia , Análise de Sequência de DNA
5.
Int J Syst Evol Microbiol ; 64(Pt 10): 3478-3484, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25052394

RESUMO

A novel methanogenic archaeon, strain MC-15(T), was isolated from a floating biofilm on a sulphurous subsurface lake in Movile Cave (Mangalia, Romania). Cells were non-motile sarcina-like cocci with a diameter of 2-4 µm, occurring in aggregates. The strain was able to grow autotrophically on H2/CO2. Additionally, acetate, methanol, monomethylamine, dimethylamine and trimethylamine were utilized, but not formate or dimethyl sulfide. Trypticase peptone and yeast extract were not required for growth. Optimal growth was observed at 33 °C, pH 6.5 and a salt concentration of 0.05 M NaCl. The predominant membrane lipids of MC-15(T) were archaeol and hydroxyarchaeol phosphatidylethanolamine, phosphatidylglycerol, and phosphatidylinositol as well as hydroxyarchaeol phosphatidylserine and archaeol glycosaminyl phosphatidylinositol. The closely related species, Methanosarcina vacuolata and Methanosarcina horonobensis, had a similar composition of major membrane lipids to strain MC-15(T). The 16S rRNA gene sequence of strain MC-15(T) was similar to those of Methanosarcina vacuolata DSM 1232(T) (sequence similarity 99.3%), Methanosarcina horonobensis HB-1(T) (98.8%), Methanosarcina barkeri DSM 800(T) (98.7%) and Methanosarcina siciliae T4/M(T) (98.4%). DNA-DNA hybridization revealed 43.3% relatedness between strain MC-15(T) and Methanosarcina vacuolata DSM 1232(T). The G+C content of the genomic DNA was 39.0 mol%. Based on physiological, phenotypic and genotypic differences, strain MC-15(T) represents a novel species of the genus Methanosarcina, for which the name Methanosarcina spelaei sp. nov. is proposed. The type strain is MC-15(T) ( = DSM 26047(T) = JCM 18469(T)).


Assuntos
Biofilmes , Methanosarcina/classificação , Filogenia , Microbiologia da Água , Composição de Bases , Cavernas/microbiologia , DNA Arqueal/genética , DNA Bacteriano/genética , Lagos/microbiologia , Lipídeos/química , Methanosarcina/genética , Methanosarcina/isolamento & purificação , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Romênia , Análise de Sequência de DNA , Enxofre
6.
FEMS Microbiol Ecol ; 100(4)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38549428

RESUMO

Climate change is affecting winter snow conditions significantly in northern ecosystems but the effects of the changing conditions for soil microbial communities are not well-understood. We utilized naturally occurring differences in snow accumulation to understand how the wintertime subnivean conditions shape bacterial and fungal communities in dwarf shrub-dominated sub-Arctic Fennoscandian tundra sampled in mid-winter, early, and late growing season. Phospholipid fatty acid (PLFA) and quantitative PCR analyses indicated that fungal abundance was higher in windswept tundra heaths with low snow accumulation and lower nutrient availability. This was associated with clear differences in the microbial community structure throughout the season. Members of Clavaria spp. and Sebacinales were especially dominant in the windswept heaths. Bacterial biomass proxies were higher in the snow-accumulating tundra heaths in the late growing season but there were only minor differences in the biomass or community structure in winter. Bacterial communities were dominated by members of Alphaproteobacteria, Actinomycetota, and Acidobacteriota and were less affected by the snow conditions than the fungal communities. The results suggest that small-scale spatial patterns in snow accumulation leading to a mosaic of differing tundra heath vegetation shapes bacterial and fungal communities as well as soil carbon and nutrient availability.


Assuntos
Ecossistema , Micobioma , Neve , Tundra , Bactérias/genética , Solo/química , Estações do Ano , Mudança Climática , Nutrientes , Regiões Árticas
7.
PNAS Nexus ; 3(4): pgae123, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38655503

RESUMO

Desert environments constitute one of the largest and yet most fragile ecosystems on Earth. Under the absence of regular precipitation, microorganisms are the main ecological component mediating nutrient fluxes by using soil components, like minerals and salts, and atmospheric gases as a source for energy and water. While most of the previous studies on microbial ecology of desert environments have focused on surface environments, little is known about microbial life in deeper sediment layers. Our study is extending the limited knowledge about microbial communities within the deeper subsurface of the hyperarid core of the Atacama Desert. By employing intracellular DNA extraction and subsequent 16S rRNA sequencing of samples collected from a soil pit in the Yungay region of the Atacama Desert, we unveiled a potentially viable microbial subsurface community residing at depths down to 4.20 m. In the upper 80 cm of the playa sediments, microbial communities were dominated by Firmicutes taxa showing a depth-related decrease in biomass correlating with increasing amounts of soluble salts. High salt concentrations are possibly causing microbial colonization to cease in the lower part of the playa sediments between 80 and 200 cm depth. In the underlying alluvial fan deposits, microbial communities reemerge, possibly due to gypsum providing an alternative water source. The discovery of this deeper subsurface community is reshaping our understanding of desert soils, emphasizing the need to consider subsurface environments in future explorations of arid ecosystems.

8.
Sci Total Environ ; 945: 173846, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38871316

RESUMO

Soil bacterial communities play a critical role in shaping soil stability and formation, exhibiting a dynamic interaction with local climate and soil depth. We employed an innovative DNA separation method to characterize microbial assemblages in low-biomass environments such as deserts and distinguish between intracellular DNA (iDNA) and extracellular DNA (eDNA) in soils. This approach, combined with analyses of physicochemical properties and co-occurrence networks, investigated soil bacterial communities across four sites representing diverse climatic gradients (i.e., arid, semi-arid, Mediterranean, and humid) along the Chilean Coastal Cordillera. The separation method yielded a distinctive unimodal pattern in the iDNA pool alpha diversity, increasing from arid to semi-arid climates and decreasing in humid environments, highlighting the rapid feedback of the iDNA community to increasing soil moisture. In the arid region, harsh surface conditions restrict bacterial growth, leading to peak iDNA abundance and diversity occurring in slightly deeper layers than the other sites. Our findings confirmed the association between specialist bacteria and ecosystem-functional traits. We observed transitions from Halomonas and Delftia, resistant to extreme arid environments, to Class AD3 and the genus Bradyrhizobium, associated with plants and organic matter in humid environments. The distance-based redundancy analysis (dbRDA) analysis revealed that soil pH and moisture were the key parameters that influenced bacterial community variation. The eDNA community correlated slightly better with the environment than the iDNA community. Soil depth was found to influence the iDNA community significantly but not the eDNA community, which might be related to depth-related metabolic activity. Our investigation into iDNA communities uncovered deterministic community assembly and distinct co-occurrence modules correlated with unique bacterial taxa, thereby showing connections with sites and key environmental factors. The study additionally revealed the effects of climatic gradients and soil depth on living and dead bacterial communities, emphasizing the need to distinguish between iDNA and eDNA pools.


Assuntos
Bactérias , Clima , Microbiota , Microbiologia do Solo , Solo , Chile , Bactérias/classificação , Solo/química , Ecossistema , Monitoramento Ambiental , Biodiversidade
9.
Int J Syst Evol Microbiol ; 63(Pt 8): 2986-2991, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23378113

RESUMO

A methanogenic archaeon, strain SMA-21(T), was isolated from a permafrost-affected soil by serial dilution in liquid medium. The cells were non-motile, stained Gram-negative and grew as irregular cocci with a diameter of 1.3-2.5 µm. Optimal growth was observed at 28 °C, pH 7.8 and 0.02 M NaCl. The strain grew on H2/CO2, methanol and acetate, but not on formate, ethanol, 2-butanol, 2-propanol, monomethylamine, dimethylamine, trimethylamine or dimethyl sulfide. Major membrane lipids of strain SMA-21(T) were archaeol phosphatidylglycerol, archaeol phosphatidylethanolamine and the corresponding hydroxyarchaeol compounds. The G+C content of the genomic DNA was 40.9 mol%. The 16S rRNA gene sequence was closely related to those of Methanosarcina mazei DSM 2053(T) (similarity 99.9 %) and Methanosarcina horonobensis HB-1(T) (similarity 98.7 %). On basis of the level of DNA-DNA hybridization (22.1 %) between strain SMA-21(T) and Methanosarcina mazei DSM 2053(T) as well as of phenotypic and genotypic differences, strain SMA-21(T) was assigned to a novel species of the genus Methanosarcina, for which the name Methanosarcina soligelidi sp. nov. is proposed. The type strain is SMA-21(T) (=DSM 26065(T) [corrected] = JCM 18468).


Assuntos
Methanosarcina/classificação , Filogenia , Microbiologia do Solo , Composição de Bases , DNA Arqueal/genética , Methanosarcina/genética , Methanosarcina/isolamento & purificação , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sibéria
10.
Int J Syst Evol Microbiol ; 63(Pt 7): 2666-2671, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23291884

RESUMO

During diversity studies of the glacier forefields of the Larsemann Hills, East Antarctica, a novel psychrotolerant, non-motile Gram-negative, shiny yellow, rod-shaped, aerobic bacterium, designated strain PB4(T) was isolated from a soil sample. Strain PB4(T) produces indole from tryptophan and hydrolyses casein. It grows between 0 and 25 °C with an optimum growth temperature of 20 °C. A wide range of substrates are used as sole carbon sources and acid is produced from numerous carbohydrates. The major menaquinone is MK-6. Identified polar lipids are ethanolamines and ornithine lipids. Major fatty acids (>10 %) are iso-C15 : 0 (13.0 %) and iso-2OH-C15 : 0 (51.2 %). G+C content is 33.7 mol%. The polyamine pattern is composed of sym-homospermidine (25.1 µmol g(-1) dry weight), minor amounts of cadaverine (0.2 µmol g(-1) dry weight) and spermidine (0.4 µmol g(-1) dry weight) and traces of putrescine and spermine (<0.1 µmol g(-1) dry weight). Strain PB4(T) had highest 16S rRNA gene similarities with the type strains of Chryseobacterium humi (97.0 %) and Chryseobacterium marinum (96.5 %). Considering phenotypic and genotypic characterization, strain PB4(T) represents a novel species in the genus Chryseobacterium (family Flavobacteriaceae), for which the name Chryseobacterium frigidisoli sp. nov. is proposed. The type strain is PB4(T) ( = DSM 26000(T) = LMG 27025(T)).


Assuntos
Chryseobacterium/classificação , Camada de Gelo/microbiologia , Filogenia , Microbiologia do Solo , Regiões Antárticas , Técnicas de Tipagem Bacteriana , Chryseobacterium/genética , Chryseobacterium/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/análise , Dados de Sequência Molecular , Poliaminas/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/análise
11.
Int J Syst Evol Microbiol ; 63(Pt 9): 3197-3203, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23456802

RESUMO

A novel psychrotolerant, Gram-negative, shiny white, curved-rod-shaped, facultatively anaerobic bacterium PB1(T) was isolated from a soil sample collected from a glacier forefield of the Larsemann Hills, East Antarctica. Isolate PB1(T) has catalase and low urease activity and hydrolyses gelatin and starch. Strain PB1(T) is able to grow between -5 °C and 30 °C with optimum growth at 14-20 °C. Glycerol, dl-arabinose, d-xylose, d-galactose, d-fructose, d-lyxose, d-fucose and potassium gluconate are used as sole carbon sources. The major quinone is ubiquinone Q-8. The major fatty acids (>10%) for PB1(T) are C(16:0) (19.1%), C(16:1)ω7cis (44.6%) and C(18:1)ω7cis (16.2%). The major polyamines are putrescine [54.9 µmol (g dry weight)(-1)] and 2-hydroxy putrescine [18.5 µmol (g dry weight)(-1)]. DNA G+C content is 62.5 mol%. Strain PB1(T) is phylogenetically related to species of the genus Herbaspirillum, with highest 16S rRNA gene sequence similarities to Herbaspirillum canariense (97.3%), Herbaspirillum aurantiacum (97.2%), Herbaspirillum soli (97.2%) and Herbaspirillum frisingense (97.0%). The DNA-DNA relatedness values were below 30% between PB1(T) and the type strains of Herbaspirillum canariense, Herbaspirillum aurantiacum and Herbaspirillum soli. The different geographical origin of strain PB1(T) from its closest phylogenetic relatives resulted in different phenotypic and genotypic specifications, whereby strain PB(T) represents a novel species of the genus Herbaspirillum, for which the name Herbaspirillum psychrotolerans is proposed. The type strain is PB1(T) (DSM 26001(T) =LMG 27282(T)).


Assuntos
Herbaspirillum/classificação , Camada de Gelo/microbiologia , Filogenia , Regiões Antárticas , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/análise , Herbaspirillum/genética , Herbaspirillum/isolamento & purificação , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Poliaminas/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/análise
12.
Microbiologyopen ; 12(3): e1369, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37379428

RESUMO

The simultaneous extraction of intracellular DNA (iDNA) and extracellular DNA (eDNA) can help to separate the living in situ community (represented by iDNA) from background DNA that originated both from past communities and from allochthonous sources. As iDNA and eDNA extraction protocols require separating cells from the sample matrix, their DNA yields are generally lower than direct methods that lyse the cells within the sample matrix. We, therefore, tested different buffers with and without adding a detergent mix (DM) in the extraction protocol to improve the recovery of iDNA from surface and subsurface samples that covered a variety of terrestrial environments. The combination of a highly concentrated sodium phosphate buffer plus DM significantly improved iDNA recovery for almost all tested samples. Additionally, the combination of sodium phosphate and EDTA improved iDNA recovery in most of the samples and even allowed the successful extraction of iDNA from extremely low-biomass iron-bearing rock samples taken from the deep biosphere. Based on our results, we recommend using a protocol with sodium phosphate in combination with either a DM (NaP 300 mM + DM) or EDTA (NaP + EDTA 300 mM). Furthermore, for studies that rely on the eDNA pool, we recommend using buffers solely based on sodium phosphate because the addition of EDTA or a DM resulted in a decrease in eDNA for most of the tested samples. These improvements can help reduce community bias in environmental studies and contribute to better characterizations of both modern and past ecosystems.


Assuntos
DNA , Ecossistema , Ácido Edético , DNA/genética , Fosfatos
13.
Sci Total Environ ; 845: 157321, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35839872

RESUMO

Freshwater ecosystems are characterized by complex and highly dynamic microbial communities that are strongly structured by their local environment and biota. Accelerating urbanization and growing city populations detrimentally alter freshwater environments. To determine differences in freshwater microbial communities associated with urbanization, full-length 16S rRNA gene PacBio sequencing was performed in a case study from surface waters and sediments from a wastewater treatment plant, urban and rural lakes in the Berlin-Brandenburg region, Northeast Germany. Water samples exhibited highly habitat specific bacterial communities with multiple genera showing clear urban signatures. We identified potentially harmful bacterial groups associated with environmental parameters specific to urban habitats such as Alistipes, Escherichia/Shigella, Rickettsia and Streptococcus. We demonstrate that urbanization alters natural microbial communities in lakes and, via simultaneous warming and eutrophication and creates favourable conditions that promote specific bacterial genera including potential pathogens. Our findings are evidence to suggest an increased potential for long-term health risk in urbanized waterbodies, at a time of rapidly expanding global urbanization. The results highlight the urgency for undertaking mitigation measures such as targeted lake restoration projects and sustainable water management efforts.


Assuntos
Microbiota , Urbanização , Bactérias , Lagos/microbiologia , RNA Ribossômico 16S/genética
14.
ISME J ; 16(9): 2242-2254, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35764676

RESUMO

Zoosporic fungi of the phylum Chytridiomycota (chytrids) regularly dominate pelagic fungal communities in freshwater and marine environments. Their lifestyles range from obligate parasites to saprophytes. Yet, linking the scarce available sequence data to specific ecological traits or their host ranges constitutes currently a major challenge. We combined 28 S rRNA gene amplicon sequencing with targeted isolation and sequencing approaches, along with cross-infection assays and analysis of chytrid infection prevalence to obtain new insights into chytrid diversity, ecology, and seasonal dynamics in a temperate lake. Parasitic phytoplankton-chytrid and saprotrophic pollen-chytrid interactions made up the majority of zoosporic fungal reads. We explicitly demonstrate the recurrent dominance of parasitic chytrids during frequent diatom blooms and saprotrophic chytrids during pollen rains. Distinct temporal dynamics of diatom-specific parasitic clades suggest mechanisms of coexistence based on niche differentiation and competitive strategies. The molecular and ecological information on chytrids generated in this study will aid further exploration of their spatial and temporal distribution patterns worldwide. To fully exploit the power of environmental sequencing for studies on chytrid ecology and evolution, we emphasize the need to intensify current isolation efforts of chytrids and integrate taxonomic and autecological data into long-term studies and experiments.


Assuntos
Quitridiomicetos , Diatomáceas , Parasitos , Animais , Quitridiomicetos/genética , Diatomáceas/genética , Diatomáceas/microbiologia , Fungos/genética , Lagos/microbiologia , Fitoplâncton/microbiologia
15.
Int J Syst Evol Microbiol ; 61(Pt 8): 1849-1853, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20817836

RESUMO

A psychrotolerant, Gram-stain-positive, yellow-pigmented, aerobic rod, designated SK1(T), was isolated from a soil sample collected from Store Koldewey, north-east Greenland. Cells were catalase- and methyl red-positive, produced H(2)S and produced acid from glucose, mannitol and salicin. Strain SK1(T) was able to grow between -6 and 28 °C, with an optimum at 20 °C. The isolate contained 2,4-diaminobutyrate, glycine, alanine and glutamic acid in the cell wall and the major menaquinones were MK-10 and MK-11. Identified polar lipids were phosphatidylglycerol and diphosphatidylglycerol. The major fatty acids were anteiso-C(15 : 0) (53.5 %), anteiso-C(17 : 0) (17.0 %) and C(18 : 0) (12.1 %). The genomic DNA G+C content was 67.8 mol%. Strain SK1(T) showed the highest 16S rRNA gene sequence similarity with Cryobacterium psychrotolerans 0549(T) (97.6 %) and Cryobacterium roopkundense RuGl7(T) (96.8 %). Considering morphological, physiological, biochemical and chemotaxonomic characters and phylogenetic analysis, strain SK1(T) represents a novel species in the genus Cryobacterium, for which the name Cryobacterium arcticum sp. nov. is proposed. The type strain is SK1(T) ( = DSM 22823(T)  = NCCB 100316(T)).


Assuntos
Actinomycetales/classificação , Actinomycetales/isolamento & purificação , Microbiologia do Solo , Actinomycetales/genética , Actinomycetales/metabolismo , Regiões Árticas , Temperatura Baixa , DNA Bacteriano/genética , DNA Ribossômico/genética , Ácidos Graxos/metabolismo , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética
16.
Int J Syst Evol Microbiol ; 61(Pt 8): 1938-1943, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20833887

RESUMO

A cold-tolerant, yellow-pigmented, Gram-positive, motile, facultatively anaerobic bacterial strain, LI1(T), was isolated from a moss-covered soil from Livingston Island, Antarctica, near the Bulgarian station St. Kliment Ohridski. Comparative 16S rRNA gene sequence-based phylogenetic analysis placed the strain in a clade with the species Leifsonia kafniensis KFC-22(T), Leifsonia pindariensis PON10(T) and Leifsonia antarctica SPC-20(T), with which it showed sequence similarities of 99.0, 97.9 and 97.9 %, respectively. DNA-DNA hybridization revealed a reassociation value of 2.7 % with L. kafniensis LMG 24362(T). The DNA G+C content of strain LI1(T) was 64.5 mol%. The growth temperature range was -6 to 28 °C, with optimum growth at 16 °C. Growth occurred in 0-5 % NaCl and at pH 4.5-9.5, with optimum growth in 1-2 % NaCl and at pH 5.5-6.5. The predominant fatty acids were anteiso-C(15 : 0), C(18 : 0) and iso-C(15 : 0). The polar lipids were phosphatidylglycerol and diphosphatidylglycerol. Physiological and biochemical tests clearly differentiated strain LI1(T) from L. kafniensis. Therefore, a novel cold-tolerant species within the genus Leifsonia is proposed: Leifsonia psychrotolerans sp. nov. (type strain LI1(T) = DSM 22824(T) = NCCB 100313(T)).


Assuntos
Actinomycetales/classificação , Actinomycetales/isolamento & purificação , Microbiologia do Solo , Actinomycetales/genética , Actinomycetales/metabolismo , Regiões Antárticas , Temperatura Baixa , DNA Bacteriano/genética , DNA Ribossômico/genética , Ácidos Graxos/metabolismo , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética
17.
Int J Syst Evol Microbiol ; 61(Pt 4): 979-984, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20511467

RESUMO

Two novel cold-tolerant, Gram-stain-positive, motile, facultatively anaerobic bacterial strains, LI2(T) and LI3(T), were isolated from moss-covered soil from Livingston Island, Antarctica, near the Bulgarian station St Kliment Ohridski. A rod-coccus cycle was observed for both strains. 16S rRNA gene sequence analysis revealed an affiliation to the genus Arthrobacter, with the highest similarity to Arthrobacter stackebrandtii and Arthrobacter psychrochitiniphilus for strain LI2(T) (97.8 and 97.7 % similarity to the respective type strains) and to Arthrobacter kerguelensis and Arthrobacter psychrophenolicus for strain LI3(T) (97.4 and 97.3 % similarity to the respective type strains). The growth temperature range was -6 to 28 °C for LI2(T) and -6 to 24 °C for LI3(T), with an optimum at 16 °C for both strains. Growth occurred at 0-10 % (w/v) NaCl, with optimum growth at 0-1 % (w/v) for LI2(T) and 0.5-3 % (w/v) for LI3(T). The pH range for growth was pH 4-9.5 with an optimum of pH 8 for LI2(T) and pH 6.5 for LI3(T). The predominant fatty acids were anteiso-C(15 : 0), C(18 : 0) and anteiso-C(17 : 0) for LI2(T) and anteiso-C(15 : 0) and C(18 : 0) for LI3(T). Physiological and biochemical tests clearly differentiated strain LI2(T) from A. stackebrandtii and A. psychrochitiniphilus and strain LI3(T) from A. kerguelensis and A. psychrophenolicus. Therefore, two novel species within the genus Arthrobacter are proposed: Arthrobacter livingstonensis sp. nov. (type strain LI2(T)  = DSM 22825(T)  = NCCB 100314(T)) and Arthrobacter cryotolerans sp. nov. (type strain LI3(T)  = DSM 22826(T)  = NCCB 100315(T)).


Assuntos
Arthrobacter/classificação , Arthrobacter/isolamento & purificação , Microbiologia do Solo , Aerobiose , Anaerobiose , Regiões Antárticas , Arthrobacter/genética , Arthrobacter/fisiologia , Análise por Conglomerados , Temperatura Baixa , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ácidos Graxos/análise , Concentração de Íons de Hidrogênio , Locomoção , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Cloreto de Sódio/metabolismo
18.
Front Microbiol ; 12: 761259, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777314

RESUMO

Cyanobacteria are important primary producers in temperate freshwater ecosystems. However, studies on the seasonal and spatial distribution of cyanobacteria in deep lakes based on high-throughput DNA sequencing are still rare. In this study, we combined monthly water sampling and monitoring in 2019, amplicon sequence variants analysis (ASVs; a proxy for different species) and quantitative PCR targeting overall cyanobacteria abundance to describe the seasonal and spatial dynamics of cyanobacteria in the deep hard-water oligo-mesotrophic Lake Tiefer See, NE Germany. We observed significant seasonal variation in the cyanobacterial community composition (p < 0.05) in the epi- and metalimnion layers, but not in the hypolimnion. In winter-when the water column is mixed-picocyanobacteria (Synechococcus and Cyanobium) were dominant. With the onset of stratification in late spring, we observed potential niche specialization and coexistence among the cyanobacteria taxa driven mainly by light and nutrient dynamics. Specifically, ASVs assigned to picocyanobacteria and the genus Planktothrix were the main contributors to the formation of deep chlorophyll maxima along a light gradient. While Synechococcus and different Cyanobium ASVs were abundant in the epilimnion up to the base of the euphotic zone from spring to fall, Planktothrix mainly occurred in the metalimnetic layer below the euphotic zone where also overall cyanobacteria abundance was highest in summer. Our data revealed two potentially psychrotolerant (cold-adapted) Cyanobium species that appear to cope well under conditions of lower hypolimnetic water temperature and light as well as increasing sediment-released phosphate in the deeper waters in summer. The potential cold-adapted Cyanobium species were also dominant throughout the water column in fall and winter. Furthermore, Snowella and Microcystis-related ASVs were abundant in the water column during the onset of fall turnover. Altogether, these findings suggest previously unascertained and considerable spatiotemporal changes in the community of cyanobacteria on the species level especially within the genus Cyanobium in deep hard-water temperate lakes.

19.
Microorganisms ; 9(8)2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34442857

RESUMO

Sedimentary ancient DNA-based studies have been used to probe centuries of climate and environmental changes and how they affected cyanobacterial assemblages in temperate lakes. Due to cyanobacteria containing potential bloom-forming and toxin-producing taxa, their approximate reconstruction from sediments is crucial, especially in lakes lacking long-term monitoring data. To extend the resolution of sediment record interpretation, we used high-throughput sequencing, amplicon sequence variant (ASV) analysis, and quantitative PCR to compare pelagic cyanobacterial composition to that in sediment traps (collected monthly) and surface sediments in Lake Tiefer See. Cyanobacterial composition, species richness, and evenness was not significantly different among the pelagic depths, sediment traps and surface sediments (p > 0.05), indicating that the cyanobacteria in the sediments reflected the cyanobacterial assemblage in the water column. However, total cyanobacterial abundances (qPCR) decreased from the metalimnion down the water column. The aggregate-forming (Aphanizomenon) and colony-forming taxa (Snowella) showed pronounced sedimentation. In contrast, Planktothrix was only very poorly represented in sediment traps (meta- and hypolimnion) and surface sediments, despite its highest relative abundance at the thermocline (10 m water depth) during periods of lake stratification (May-October). We conclude that this skewed representation in taxonomic abundances reflects taphonomic processes, which should be considered in future DNA-based paleolimnological investigations.

20.
Environ Microbiol Rep ; 13(3): 337-347, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33538408

RESUMO

We explored the diversity and community composition of bacteria along a vertical gradient in Lake Issyk Kul, Kyrgyzstan, one of the world's largest and deepest brackish lakes. We identified 4904 bacterial amplicon sequence variants based on the 16S rRNA gene analysis and determined significant changes in the composition, responding mainly to depth and salinity. A higher abundance of Proteobacteria and Bacteroidetes was observed in the surface waters and lake tributaries. Cyanobacteria were more abundant in the deep chlorophyll maximum from 28.5 to 128 m, while Planctomycetes and Chloroflexi were dominant in the deepest layers, from 128 to 600 m. According to our machine learning analyses, depth and temperature were the most critical environmental factors, with strong effects on Proteobacteria, Planctomycetes and Chloroflexi, while oxygen was associated with the variations in Cyanobacteria. We also observed that with increasing depth, the alpha diversity values increased. The dominance of Planctomycetes and Chloroflexi in the deepest layers can only be seen in a few lakes of the world. However, the lake is facing increasing anthropogenic and climatic pressure. There is an urgent need to understand better the ecological role and function of these unique deep-water microbial communities.


Assuntos
Cianobactérias , Microbiota , Cianobactérias/genética , Quirguistão , Lagos/microbiologia , Microbiota/genética , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA