Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Metab Brain Dis ; 39(4): 569-576, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38300392

RESUMO

Glioblastoma (GBM) is a common primary central nervous system tumor. Although the multimodal integrated treatment for GBM has made great progress in recent years, the overall survival time of GBM is still short. Thus, novel treatments for GBM are worth further investigation and exploration. This study aimed to investigate the effects of etomidate on GBM tumor growth and the underlying mechanism. A xenograft tumor model was established and treated with etomidate to assess tumor growth. Immunohistochemistry (IHC) assay evaluated the positive rate of Ki67 cells in tumor tissues. Cell counting kit (CCK)-8 and EdU assays accessed the cell viability and proliferation. Immunofluorescence (IF) staining detected the distribution of macrophage markers in tumor tissues. The percentages of M1- and M2-like macrophages in tumor-associated macrophages (TAMs) and co-culture system (macrophages and GBM cells) were detected using flow cytometry. Macrophage polarization-related genes were measured using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Etomidate treatment inhibited the tumor growth, and increased the CD86+ cells but decreased the CD206+ cells in TAMs. The gene expression of M1 markers was increased in TAMs of etomidate-treated mice, whereas that of M2 markers was decreased. Moreover, etomidate treatment increased the number of CD86+ M1-like macrophages co-cultured with tumor cells but decreased that of CD206+ M2-like macrophages, with the upregulation of M1 markers and downregulation of M2 markers. Etomidate inhibited GBM tumor growth by promoting M1 macrophage polarization, suggesting a new insight into the clinical treatment of GBM.


Assuntos
Neoplasias Encefálicas , Etomidato , Glioblastoma , Macrófagos , Etomidato/farmacologia , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioblastoma/metabolismo , Animais , Camundongos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Ensaios Antitumorais Modelo de Xenoenxerto , Masculino , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/metabolismo , Camundongos Nus
2.
Angew Chem Int Ed Engl ; 63(27): e202403264, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38659076

RESUMO

In situ cyclized polyacrylonitrile (CPAN) is developed to replace n-type metal oxide semiconductors (TiO2 or SnO2) as an electron selective layer (ESL) for highly efficient and stable n-i-p perovskite solar cells (PSCs). The CPAN layer is fabricated via facile in situ cyclization reaction of polyacrylonitrile (PAN) coated on a conducting glass substrate. The CPAN layer is robust and insoluble in common solvents, and possesses n-type semiconductor properties with a high electron mobility of 4.13×10-3 cm2 V-1 s-1. With the CPAN as an ESL, the PSC affords a power conversion efficiency (PCE) of 23.12 %, which is the highest for the n-i-p PSCs with organic ESLs. Moreover, the device with the CPAN layer holds superior operational stability, maintaining over 90 % of their initial efficiency after 500 h continuous light soaking. These results confirm that the CPAN layer would be a desirable low-cost and efficient ESL for n-i-p PSCs and other photoelectronic devices with high performance and stability.

3.
Int J Mol Sci ; 23(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35628102

RESUMO

The careful design of nanostructures and multi-compositions of non-noble metal-based electrocatalysts for highly efficient electrocatalytic hydrogen and oxygen evolution reaction (HER and OER) is of great significance to realize sustainable hydrogen release. Herein, bifunctional electrocatalysts of the three-dimensional (3D) cobalt-nickel phosphide nanoarray in situ grown on nickel foams (CoNiP NA/NF) were synthesized through a facile hydrothermal method followed by phosphorization. Due to the unique self-template nanoarray structure and tunable multicomponent system, the CoNiP NA/NF samples present exceptional activity and durability for HER and OER. The optimized sample of CoNiP NA/NF-2 afforded a current density of 10 mA cm-2 at a low overpotential of 162 mV for HER and 499 mV for OER, corresponding with low Tafel slopes of 114.3 and 79.5 mV dec-1, respectively. Density functional theory (DFT) calculations demonstrate that modulation active sites with appropriate electronic properties facilitate the interaction between the catalyst surface and intermediates, especially for the adsorption of absorbed H* and *OOH intermediates, resulting in an optimized energy barrier for HER and OER. The 3D nanoarray structure, with a large specific surface area and abundant ion channels, can enrich the electroactive sites and enhance mass transmission. This work provides novel strategies and insights for the design of robust non-precious metal catalysts.


Assuntos
Níquel , Água , Aerossóis , Hidrogênio , Oxigênio , Porosidade
4.
Small ; 14(12): e1703453, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29424080

RESUMO

Although composites of organic polymers or n-type small molecule/carbon nanotube (CNT) have achieved significant advances in thermoelectric (TE) applications, p-type TE composites of small organic molecules as thick surface coating layers on the surfaces of inorganic nanoparticles still remain a great challenge. Taking advantage of in situ oxidation reaction of thieno[3,4-b]pyrazine (TP) into TP di-N-oxide (TPNO) on single-walled CNT (SWCNT) surface, a novel synthesis strategy is proposed to achieve flexible films of TE composites with narrow-bandgap (1.19 eV) small molecule coating on SWCNT surface. The TE performance can be effectively enhanced and conveniently tuned by poly(sodium-p-styrenesulfonate) content, TPNO/SWCNT mass ratio, and posttreatment by various polar solvents. The maximum of the composite power factor at room temperature is 29.4 ± 1.0 µW m-1 K-2 . The work presents a way to achieve flexible films of p-type small organic molecule/inorganic composites with clear surface coating morphology for TE application.

5.
J Hazard Mater ; 467: 133751, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38341884

RESUMO

Regulation of peroxymonosulfate (PMS) activation from radical to non-radical pathways is an emerging focus of advanced oxidation processes (AOPs) due to its superiority of anti-interference to complex wastewater. However, the detailed correlation mechanism between the defect structure of the catalyst and the regulation of radicals/non-radicals remains unclear. Herein, natural chalcopyrite (CuFeS2) with different levels of S vacancies created by a simple NaBH4 reduction process was employed to explore the above-mentioned underlying mechanism for constructing high efficiency and low cost of catalyst towards AOPs. With the assistance of simulated solar light, S-deficient chalcopyrite (Sv-NCP) exhibited prominent performance for PMS activation. More interestingly, the different degrees of S vacancies regulated the active species from radicals to non-radical 1O2, thus showing excellent purification of complex wastewater as well as actual pharmaceutical wastewater. Mechanistic analysis reveals that PMS tends to loss electrons on S vacancies sites and is dissociated into 1O2 rather than ·OH/SO4·- due to electron deficiency. Meanwhile, the improved adsorption performance makes the degradation sites of pollutants change from solution to surface. Most importantly, Sv-NCP presented excellent detoxication for antibiotic wastewater due to the high selectivity of 1O2. This work provides novel insights into the regulation of active species in Fenton-like reactions via defect engineering for high efficiency of pollutant degradation.

6.
J Colloid Interface Sci ; 678(Pt B): 1004-1011, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39276509

RESUMO

Active and durable electrocatalysts are essential for commercializing direct methanol fuel cells. However, Pt-based catalysts, extensively utilized in the methanol oxidation reaction (MOR), are suffered from resource scarcity and CO poisoning, which degrade MOR activity severely. Herein, Pt1Rux bimetallic catalysts were synthesized by confining Pt1Rux alloys within the shells of mesoporous carbon hollow spheres (MCHS) via a vacuum-assisted impregnation method (Pt1Rux@MCHS). The confinement effect induced by mesoporous carbon hollow spheres resulted in a robust structure of Pt1Ru3@MCHS with an ultrafine dispersion of alloy nanoparticles. The experimental and theoretical results confirmed that the boosting electrocatalytic activity and stability of the MOR over Pt1Ru3@MCHS were contributed to the regulated electronic structure as well as the superior CO tolerance of atomic Pt site caused by the electronic interaction between single Pt atoms and Ru nanoparticles. This strategy is versatile for the rational design of Pt-based bimetallic catalysts and has a positive impact on MOR performance.

7.
J Colloid Interface Sci ; 646: 824-833, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37230000

RESUMO

With the complexity and diversification of thermoelectric (TE) application scenarios, it becomes increasingly difficult for single-component thermoelectric materials to satisfy practical demands. Therefore, recent researches have largely focused on the development of the multi-component nanocomposites, which are probably a good solution for the TE application of some materials that are not eligible when used alone. In this work, a seires of single-walled carbon nanotube (SWCNT)/polypyrrole (PPy)/tellurium (Te)/lead telluride (PbTe) multi-layer flexible composite films were fabricated via the successive electrodeposition of the flexible PPy layer with a low thermal conductivity, the ultra-thin Te induction layer, and the brittle PbTe layer with a large Seebeck coefficient over the pre-fabricated SWCNT membrane electrode with a high electrical conductivity. Through the complementary advantages between different components and the multiple synergies of the interface engineering, the SWCNT/PPy/Te/PbTe composites harvested the excellent TE performance with a maximum power factor (PF) of 929.8 ± 35.4 µW m-1 K-2 at room temperature, outperforming those of most of the electrochemically-prepared organic/inorganic TE composites reported previously. This work evidenced that the electrochemical multi-layer assembly is a feasible tactic for constructing special thermoelectric materials to meet customized requirements, which could also be applied to other material platforms.

8.
J Am Chem Soc ; 134(2): 824-7, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22185201

RESUMO

We report herein the synthesis of a new metal cluster-encapsulated supramolecular capsule, [(C≡C)@Ag(5-6)@(Py6)(2)](CF(3)SO(3))(3-4) (3, Py6 = azacalix[6]pyridine), by use of a bowl-shaped macrocyclic ligand Py6. The multinuclear silver carbide cluster aggregate in 3 is encapsulated by two Py6 ligands through both metal-ligand coordination and cation-π interactions, spotlighting a new synthetic strategy for supramolecular capsules.


Assuntos
Compostos de Prata/química , Modelos Moleculares , Estrutura Molecular , Espectrometria de Massas por Ionização por Electrospray
9.
ACS Appl Mater Interfaces ; 14(8): 10815-10824, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35175746

RESUMO

As one of the most attractive inorganics to improve the thermoelectric (TE) performance of the conducting polymers, tellurium (Te) has received intense concern due to its superior Seebeck coefficient (S). However, far less attention has been paid to polypyrrole (PPy)/Te TE composites to date. In this work, we present an innovative full-electrochemical method to architect PPy/Te TE composite films by sequentially depositing Te with large S and PPy with high electrical conductivity (σ). Consequently, the PPy/Te composite films achieved excellent TE performance, with the largest power factor (PF) reaching up to 234.3 ± 4.1 µW m-1 K-2. To the best of our knowledge, this value approaches the reported highest PF record (240.3 ± 5.0 µW m-1 K-2) for PPy-based composites. This suggests that the modified full-electrochemical method is a feasible and effective strategy for achieving high-performance TE composite films, which would probably provide a general guideline for the design and preparation of excellent TE materials in the future.

10.
Chemosphere ; 289: 133211, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34890620

RESUMO

Developing a low-cost and efficient photocatalysts activated peroxymonosulfate (PMS) for organic pollutants degradation are recognized as an importance way for dealing with environmental pollution. In this work, Fe-rectorite catalyst was synthesized by a simple impregnation-calcine method to synergetic photo activate PMS for antibiotics degradation. As expected, the Fe-rectorite/PMS/Light system exhibits superior catalytic performance for tetracycline (TC) removal, which achieving 96.4% removal rate of TC (30 mg/L) under light within 60 min. Fe-retorite has better degradation performance for TC than rectorite under photo-mediation. The enhancement of the degradation performance of TC by Fe-retorite can be attributed to the improvement of the separation efficiency of photogenerated electrons and holes in the rectorite by the loading of Fe2O3, and the accelerated active Fe(Ⅱ)/Fe(Ⅲ) cycle on the surface under photo-mediation. The large specific surface area and abundant hydroxyl groups of rectorite can also provide active sites for PMS activation. The quenching experiment and electron paramagnetic resonance (EPR) test were indicated that the h+, SO4•-, •OH, and O2-• all contributed to TC degradation. And the possible degradation pathway was proposed by LC-MS. This work helps induced a novel direction that design green, efficient, and recyclable heterogeneous catalysts to synergetic photoinduced PMS activation for enhanced degradation of TC.


Assuntos
Antibacterianos , Compostos Férricos , Silicatos de Alumínio , Minerais , Peróxidos
11.
J Colloid Interface Sci ; 608(Pt 3): 2472-2481, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34774312

RESUMO

Two-dimensional (2D) layered heterojunctions with a staggered band structure and unique interface properties exhibit promising application prospects in photocatalytic pollutant removal, water splitting, and CO2 reduction. Ultrathin 2D/2D heterojunctions with a large specific surface area and a short migration path of the photogenerated charge always illustrate a better photocatalytic performance than non-ultrathin 2D heterojunction photocatalysts. In this study, a novel ultrathin 2D/2D heterojunction of the Bi2O2(OH)(NO3)/BiOBr nanosheet composite (ultrathin BION/BiOBr) was in situ self-assembled though a cetyltrimethylammonium bromide assisted one-step hydrothermal method. Benefiting from the advantage of the unique ultrathin heterojunction structure, the ultrathin 2D/2D BION/BiOBr heterojunctions exhibit a greatly improved photocatalytic removal effect for multiple pollutants compared to the nanocrystal BION/BiOBr, pure BION. As a representative, the ultrathin 2D/2D Br-modified BION/BiOBr heterojunction shows an enhanced tetracycline degradation rate of 76%, which corresponded to a higher photodegradation rate constant of 0.01116 min-1 when compared to pure BION (17%, 0.00161 min-1) and nanocrystal BION/BiOBr (24%, 0.00223 min-1) under visible-light irradiation for 2 h. A series of characterization and density functional theory calculations demonstrate the enhanced separation and migration efficiency of the photogenerated electrons and holes over the ultrathin heterojunction, facilitating the formation of oxidizing groups for the organic pollutant removal. The possible mechanism of the TC photodegradation and the possible photodegradation pathway are also investigated in detail. This work provides a feasible method for constructing ultrathin 2D/2D heterojunction materials for environmental purification.


Assuntos
Luz , Tetraciclina , Antibacterianos , Catálise , Oxirredução
12.
J Colloid Interface Sci ; 607(Pt 2): 1061-1070, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34571295

RESUMO

Carbon nitride (C3N4) is a promising metal-free photocatalyst for solar-to-energy conversion, but bulk carbon nitride (BCN) shows insufficient light absorption, sluggish photocarrier transfer and moderate activity for photocatalysis. Herein, a facile strategy to significantly increase solar spectrum absorption of the functionalized porous carbon nitride nanosheets (MFPCN) via molecule self-assembly engineering coupled thermal polymerization is reported. This strategy can greatly enhance the wide-solar-spectrum absorption of MFPCN up to 1000 nm than most reported carbon nitride-based photocatalysts. Experimental characterizations and theoretical calculations together display that this strategy could introduce hydroxyl groups into the structure of MFPCN as well as the rich pores and active sites at the edges of framework, which can narrow the bandgap and accelerate the transfer and separation of photoinduced carries. As a result, the optimal MFPCN photocatalyst exhibit the excellent photocatalytic hydrogen evolution rate of 7.745 mmol g-1h-1 under simulated solar irradiation, which is ≈13 times that of BCN with remarkable durable CO2 reduction activities. New findings in this work will provide an approach to extend solar spectrum absorption of metal-free catalysts for solar fuel cascades.

13.
ACS Appl Mater Interfaces ; 14(7): 9116-9125, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35133810

RESUMO

Clarifying the responsibilities and constructing the synergy of different active phases are of great significance but still an urgent challenge for the heterostructure catalyst to improve the hydrogen evolution reaction (HER) process. Here, three-dimensional (3D) CoxNi(1-x)(OH)2 hollow structure integrating MoS2 nanosheet catalysts [CoxNi(1-x)(OH)2@MoS2] were ingeniously designed and prepared. This unique structure has realized the construction of a dual active phase for the optimized stepwise-synergetic hydrogen evolution process over a universal pH range through interface assembly engineering. Meanwhile, the 3D hollow heterostructure with a high surface-to-volume ratio can effectively avoid the agglomeration of MoS2 and enhance the CoxNi(1-x)(OH)2-MoS2 heterointerfaces. Thus, superior HER activity and stability were obtained over the universal pH range. Density functional theory calculation reveals that CoxNi(1-x)(OH)2 and MoS2 phases provide efficient active sites for rate-determining water dissociation and H* adsorption/H2 generation on CoxNi(1-x)(OH)2-MoS2 heterointerfaces, respectively, resulting in an optimized energy barrier for HER. This work proposes a constructive strategy to design highly efficient electrocatalysts based on the heterointerface with a defined responsible active phase of electrocatalysts.

14.
Nat Commun ; 13(1): 2146, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35443754

RESUMO

Ultrathin two-dimensional (2D) metal oxyhalides exhibit outstanding photocatalytic properties with unique electronic and interfacial structures. Compared with monometallic oxyhalides, bimetallic oxyhalides are less explored. In this work, we have developed a novel top-down wet-chemistry desalination approach to remove the alkali-halide salt layer within the complicated precursor bulk structural matrix Pb0.6Bi1.4Cs0.6O2Cl2, and successfully fabricate a new 2D ultrathin bimetallic oxyhalide Pb0.6Bi1.4O2Cl1.4. The unlocked larger surface area, rich bimetallic active sites, and faster carrier dynamics within Pb0.6Bi1.4O2Cl1.4 layers significantly enhance the photocatalytic efficiency for atmospheric CO2 reduction. It outperforms the corresponding parental matrix phase and other state-of-the-art bismuth-based monometallic oxyhalides photocatalysts. This work reports a top-down desalination strategy to engineering ultrathin bimetallic 2D material for photocatalytic atmospheric CO2 reduction, which sheds light on further constructing other ultrathin 2D catalysts for environmental and energy applications from similar complicate structure matrixes.

15.
J Am Chem Soc ; 133(22): 8448-51, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21561074

RESUMO

The designed synthesis and structural characterization of two metal cluster-centered metallosupramolecular architectures are reported. In complex [(CF(3)SO(3))Ag(4)((t)BuC≡C)(Py8)](CF(3)SO(3))(2) (1) and [(CF(3)SO(3))Ag(4){C≡C-(m-C(6)H(4))-C≡C-(m-C(6)H(4))-C≡C-(m-C(6)H(4))-C≡C}Ag(4)(CF(3)SO(3))(Py8)(2)](CF(3)SO(3))(4) (2), organic acetylide ligands are utilized to induce the formation of polynuclear silver aggregates, which are encapsulated into the central cavity of the neutral macrocyclic compound azacalix[8]pyridine (Py8). The tetrasilver cluster centered [2]- and [3]-pseudo-rotaxane structures are obtained and fully characterized by X-ray crystallography, ESI mass spectrometry, and (1)H NMR spectroscopy.


Assuntos
Rotaxanos/química , Rotaxanos/síntese química , Prata/química , Cápsulas/química , Cristalografia por Raios X , Ligantes , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Nanoestruturas/química , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Espectrometria de Massas por Ionização por Electrospray
16.
RSC Adv ; 11(15): 8664-8673, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35423352

RESUMO

Organic polymer/inorganic particle composites with thermoelectric (TE) properties have witnessed rapid progress in recent years. Nevertheless, both development of novel polymers and optimization of compositing methods remain highly desirable. In this study, we first demonstrated a simulated in situ coagulation strategy for construction of high-performance thermoelectric materials by utilizing single-walled carbon nanotubes (SWCNTs) and a new D-A polymer TPO-TTP12 that was synthesized via incorporating dioxothiopyrone subunit into a polymeric chain. It was proven that the preparation methods have a significant influence on thermoelectric properties of the TPO-TTP12/SWCNT composites. The in situ prepared composite films tend to achieve much better thermoelectric performances than those prepared by simply mixing the corresponding polymer with SWCNTs. As a result, the in situ compositing obtains the highest Seebeck coefficient of 66.10 ± 0.05 µV K-1 at the TPO-TTP12-to-SWCNT mass ratio of 1/2, and the best electrical conductivity of up to 500.5 ± 53.3 S cm-1 at the polymer/SWCNT mass ratio of 1/20, respectively; moreover, the power factor for the in situ prepared composites reaches a maximum value of 141.94 ± 1.47 µW m-1 K-2, far higher than that of 104.68 ± 0.86 µW m-1 K-2 for the by-mixing produced composites. This indicates that the dioxothiopyrone moiety is a promising building block for constructing thermoelectric polymers, and the simulated in situ compositing strategy is a promising way to improve TE properties of composite materials.

17.
ACS Omega ; 6(15): 10234-10241, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34056177

RESUMO

It is especially significant to design and construct high-performance and stable three-dimensional (3D) bifunctional nanoarchitecture electrocatalysts toward overall water splitting. Herein, we have constructed 3D self-supported phosphorus-doped ruthenium-cobalt nanowires on nickel foams (RuCoP/NF) via a simple hydrothermal reaction followed by a low-temperature phosphating reaction. Doping P can not merely enhance the intrinsic activity of electrocatalysts for overall water splitting but at the same time increase electrochemical surface areas (ECSAs) to expose more accessible active sites. As a 3D bifunctional catalyst, RuCoP/NF demonstrates superior performance for HER (44 mV@10 mA cm-2) and OER (379 mV@50 mA cm-2) in 1.0 M KOH electrolyte solution. The overall water-splitting system was assembled using RuCoP/NF as both anode and cathode. Besides, it exhibits a voltage of 1.533 V at a current density of 10 mA cm-2 and long-term durability within 24 h. P-dopant changes the electron structure of Ru and Co, which is conducive to the formation of Ruδ- and Coδ+, resulting in the adjustment of binding H*/OH* and the improvement of the overall water-splitting reaction kinetics. This work provides a facile method to produce heteroatom-doped and high-performance catalysts for efficient overall water splitting.

18.
RSC Adv ; 11(35): 21754-21759, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35478793

RESUMO

Solution-processable organic-inorganic hybrid perovskites are being widely investigated for many applications, including solar cells, light-emitting diodes, photodetectors, and lasers. Herein, we report, for the first time, successful fabrication of xerographic photoreceptors using methylammonium lead iodide (CH3NH3PbI3) perovskite as a light-absorbing material. With the incorporation of polyethylene glycol (PEG) into the perovskite film, the ion migration inherent to the perovskite material can be effectively suppressed, and the resulting photoreceptor exhibits a high and panchromatic photosensitivity, large surface potential, low dark decay, and high environmental resistance and electrical cycling stability. Specifically, the energies required to photodischarge one half of the initial surface potential (E 0.5) are 0.074 µJ cm-2 at 550 nm and 0.14 µJ cm-2 at 780 nm, respectively. The photosensitivites outmatch those of the conventionally used organic pigments having narrow spectral responses. Our findings inform a new generation of highly efficient and low-cost xerographic photoreceptors based on perovskite materials.

19.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 37(5): 529-533, 2021 Sep.
Artigo em Zh | MEDLINE | ID: mdl-34816667

RESUMO

Objective: To compare the changes in the number of circulating endothelial progenitor cells and hypoxia-inducible factors in patients with type 2 diabetes at different altitudes, and to provide a basis for the research and treatment of type 2 diabetes vascular complications. Methods: Selected Type 2 diabetes patients who were diagnosed in a low altitude area of 386 m (Xianyang City) and a high altitude area of 1 520 m (Lanzhou) (25 persons/29 persons) and healthy persons (20 persons/20 persons) were selected. An automatic biochemical analyzer was used to detect the indexes of blood lipids, blood glucose, and glycosylated hemoglobin of the two groups of people, and the concentration of Hypoxia inducible factor-1α (HIF-1α) was detected by enzyme-linked immunosorbent assay (ELISA). The number of circulating endothelial progenitor cells (EPCs) in peripheral blood was determined by a cytometer. Results: No matter in low or high altitude areas, the number of circulating EPCs in the diabetes group was lower than that in the healthy group (P<0.01). The levels of body mass index (BMI), waist to hip ratio (WHR), triglyceride (TG), fasting blood glucose (FBG) and glycosylated hemoglobin (HbAlc) were increased (P<0.05). Compared with the low-altitude group, the expression levels of HIF-1α in diabetic patients at high-altitude and healthy people were increased significantly (P<0.05), while the number of circulating EPCs was decreased significantly (P<0.05), and the number of circulating EPCs in healthy people or the patients with type 2 diabetes without vascular complications was higher than that of patients with type 2 diabetes with vascular complications (P<0.05). Conclusion: With the increase in altitude, the expression level of HIF-1α in type 2 diabetes mellitus(T2DM)patients is increased, and the number of circulating EPCs is decreased, which is closely related to the degree of vascular disease. Therefore, it is possible through transplantation of EPCs for high altitude T2DM patients to achieve the prevention and improvement of diabetic vascular complications.


Assuntos
Altitude , Diabetes Mellitus Tipo 2 , Células Progenitoras Endoteliais , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hemoglobinas Glicadas , Humanos
20.
Mol Med Rep ; 21(6): 2513-2521, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32323851

RESUMO

Long intergenic non-coding RNAs (lincRNAs) are long non­coding transcripts from the intergenic regions of annotated protein­coding genes. lincRNA cyclooxygenase 2 (Cox2) is an early­primary response gene regulated by the NF­κB signaling pathway in macrophages. It was found that lincRNACox2 was significantly increased in patients with the Mycobacterium tuberculosis (M. tuberculosis) H37Ra strain infection and macrophages, using reverse transcription-quantitative PCR (RT­qPCR). ELISA, western blotting and RT­qPCR results indicated that the inflammatory response factors tumor necrosis factor­α, interferon­Î³, interleukin­6, Cox2 and inducible nitric oxide synthase were significantly increased in H37Ra infected macrophages. In addition, the inflammatory regulating proteins NF­κB and Stat3 were significantly increased in H37Ra infected macrophages but decreased in lincRNACox2 knockdown macrophages infected with H37Ra. Moreover, the knockdown of lincRNACox2 increased the apoptotic rate of H37Ra infected macrophages and facilitated the proliferation of H37Ra. Collectively, the present results suggested that lincRNACox2 may be required for the activation of NF­κB and Stat3, in order to regulate inflammatory responses involved in resistance to M. tuberculosis infection.


Assuntos
Mycobacterium tuberculosis/patogenicidade , NF-kappa B/metabolismo , RNA Longo não Codificante/metabolismo , Tuberculose/patologia , Adulto , Apoptose , Linhagem Celular , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Feminino , Humanos , Interferon gama/genética , Interferon gama/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Masculino , Pessoa de Meia-Idade , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Interferência de RNA , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/genética , RNA Interferente Pequeno/metabolismo , Fator de Transcrição STAT3/metabolismo , Tuberculose/imunologia , Tuberculose/microbiologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA