Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pulm Pharmacol Ther ; 80: 102202, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36906117

RESUMO

Pulmonary fibrosis is a chronic interstitial fibrosis lung disease with high mortality, which is often complicated with lung cancer. The incidence of IPF complicated with lung cancer is getting higher and higher. At present, there is no consensus on the management and treatment of pulmonary fibrosis patients with lung cancer. There is an urgent need to develop preclinical drug evaluation methods for IPF with lung cancer and potential therapeutic drugs for IPF with lung cancer. The pathogenic mechanism of IPF is similar to that of lung cancer, and the multi-effect drugs with anticancer and anti-fibrosis will have potential value in the treatment of IPF complicated with lung cancer. In this study, we established an animal model of IPF complicated with lung cancer in situ to evaluate the therapeutic effect of the antiangiogenic drug anlotinib. The pharmacodynamic results in vivo showed that anlotinib could significantly improve the lung function of IPF-LC mice, reduce the content of collagen in lung tissue, increase the survival rate of mice, and inhibit the growth of lung tumor in mice. The results of Western blot and immunohistochemical analysis of lung tissue showed that anlotinib significantly inhibited the expression of fibrosis marker protein α-SMA, Collagen I and Fibronectin and tumor proliferation marker protein PCNA in mouse lung tissue, and down-regulated the content of serum tumor marker CEA. Through transcriptome analysis, we found that anlotinib regulates MAPK signal pathway, PARP signal pathway and coagulation cascade signal pathway in lung cancer and pulmonary fibrosis, which all play an important role in lung cancer and pulmonary fibrosis. In addition, there is crosstalk between the signal pathway participated by the target of anlotinib and MAPK, JAK/STAT and mTOR signal pathway. In summary, anlotinib will be a candidate for IPF-LC treatment.


Assuntos
Adenocarcinoma de Pulmão , Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Neoplasias Pulmonares , Camundongos , Animais , Fibrose Pulmonar Idiopática/complicações , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/metabolismo , Pulmão , Neoplasias Pulmonares/complicações , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Doenças Pulmonares Intersticiais/patologia , Adenocarcinoma de Pulmão/tratamento farmacológico , Colágeno/metabolismo , Biomarcadores/metabolismo , Bleomicina/farmacologia
2.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36835236

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrotic interstitial lung disease of unknown etiology. At present, the mortality rate of the deadly disease is still very high, while the existing treatments only delay the progression of the disease and improve the quality of life of patients. Lung cancer (LC) is the most fatal disease in the world. In recent years, IPF has been considered to be an independent risk factor for the development of LC. The incidence of lung cancer is increased in the patients with IPF and the mortality is also significantly increased in the patients inflicted with the two diseases. In this study, we evaluated an animal model of pulmonary fibrosis complicated with LC by implanting LC cells orthotopically into the lungs of mice several days after bleomycin induction of the pulmonary fibrosis in the same mice. In vivo studies with the model showed that exogenous recombinant human thymosin beta 4 (exo-rhTß4) alleviated the impairment of lung function and severity of damage of the alveolar structure by the pulmonary fibrosis and inhibited the proliferation of LC tumor growth. In addition, in vitro studies showed that exo-rhTß4 inhibited the proliferation and migration of A549 and Mlg cells. Furthermore, our results also showed that rhTß4 could effectively inhibit the JAK2-STAT3 signaling pathway and this might exert an anti-IPF-LC effect. The establishment of the IPF-LC animal model will be helpful for the development of drugs for the treatment of IPF-LC. Exogenous rhTß4 can be potentially used for the treatment of IPF and LC.


Assuntos
Fibrose Pulmonar Idiopática , Neoplasias Pulmonares , Timosina , Animais , Humanos , Camundongos , Bleomicina , Fibrose Pulmonar Idiopática/terapia , Janus Quinase 2/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/terapia , Qualidade de Vida , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Timosina/uso terapêutico
3.
Phytother Res ; 36(4): 1807-1821, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35229382

RESUMO

Most antiangiogenic inhibitors targeting endothelium-dependent vessels cannot inhibit tumor growth but promote tumor invasion and metastasis in some patients. Vasculogenic mimicry (VM) employs mechanisms that differ from those used to construct endothelium-dependent vessels. Inhibiting VM may be a novel antiangiogenic strategy against alternative tumor vascularization. In this paper, myricetin was selected from among several flavonoid compounds as an effective PAR1 antagonist. In two different hepatocellular carcinoma (HCC) cell lines high-expressed PAR1, myricetin inhibited cell migration, invasion and VM formation and reversed the expression of epithelial-endothelial transition (EET) markers by inhibiting PAR1 activation. Knockout of PAR1 inhibited HCC cell invasion and metastasis and weakened the inhibitory effect of myricetin on HCC cells. The migration, invasion and tube formation ability of PLC-PRF-5 cells were enhanced after PAR1 overexpression, and the inhibitory effect of myricetin was enhanced. A docking assay revealed that myricetin binds to Leu258 and Thr261 in the PAR1 activity pocket. Mutation of Leu258 and Thr261 inhibited the antitumor effect of myricetin in vitro and in vivo. In summary, myricetin reverses PAR1-mediated EET and inhibits HCC cell invasion, metastasis, VM formation and angiogenesis by targeting PAR1, and Leu258 and Thr261 of PAR1 participate in VM and angiogenesis in HCC tissues.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Endotélio/metabolismo , Endotélio/patologia , Transição Epitelial-Mesenquimal , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Humanos , Neoplasias Hepáticas/genética , Neovascularização Patológica/tratamento farmacológico , Receptor PAR-1
4.
Eur J Pharmacol ; 958: 175981, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37579968

RESUMO

Idiopathic pulmonary fibrosis is a progressive fibrotic lung disease characterized by myofibroblast proliferation and extracellular matrix deposition that has a high mortality rate and limited therapeutic options. Flavokawain A(FKA) is the major component of chalcone in kava extract. FKA has been reported to inhibit TGF-ß1-induced cardiomyocyte fibrosis by suppressing ROS production in A7r5 cells, but the role and mechanism of FKA in pulmonary fibrosis are unknown. In this study, we evaluated the effect of FKA on pulmonary fibrosis using an animal model of bleomycin-induced pulmonary fibrosis and showed that FKA alleviated the development of pulmonary fibrosis in a dose-dependent manner and improved lung function as well as collagen deposition and extracellular matrix accumulation in mice. In vitro studies showed that FKA inhibited myofibroblast activation and lung fibrosis progression by inhibiting TGF-ß1/Smad signaling in a dose-dependent manner. In addition, we identified CXCL12 as a potential target of FKA through target prediction. Molecular docking, CETSA(cellular thermal displacement assay) and silver staining assays further demonstrated that FKA could interact with CXCL12 and that FKA could inhibit CXCL12 dimerization in vitro. Further analysis revealed that FKA could inhibit fibroblast activation and reduce extracellular matrix (ECM) production and collagen deposition by blocking CXCL12/CXCR4 signaling, and knocking down CXCR4 expression could weaken the inhibitory effect of FKA on CXCL12/CXCR4 signal transduction. In conclusion, our study showed that FKA inhibited CXCL12/CXCR4 signaling by inhibiting CXCL12 dimerization, blocked the CXCL12/CXCR4 signaling pathway and inhibited the TGF-ß1-mediated signaling pathway to ameliorate pulmonary fibrosis, and FKA is a promising therapeutic agent for pulmonary fibrosis.

5.
Eur J Pharmacol ; 943: 175438, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36682482

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease, and its 5-year mortality rate is even higher than the mortality rate of some cancers. Fibrosis can cause irreversible damage to lung structure and function. Treatment options for IPF remain limited, and there is an urgent need to develop effective therapeutic drugs. Protease activated receptor-1 (PAR-1) is a G-protein-coupled receptor and is considered a potential target for the treatment of fibrotic diseases. Vorapaxar is a clinically approved PAR-1 antagonist for cardiovascular protection. The purpose of this study was to explore the potential effect and mechanism of Vorapaxar on pulmonary fibrosis in vivo and in vitro. In the experimental animal model, Vorapaxar can effectively alleviate bleomycin (BLM)-induced pulmonary fibrosis. Treatment with 2.5, 5 or 10 mg/kg Vorapaxar once a day reduced the degree of fibrosis in a dose-dependent manner. The expression of fibronectin, collagen and α smooth muscle actin decreased significantly at the messenger RNA (mRNA) and protein levels in treated mice. In vitro, our results showed that Vorapaxar could inhibit the activation of fibroblasts induced by thrombin in a dose-dependent manner. In terms of mechanism, Vorapaxar inhibits the signal transduction of JAK2/STAT1/3 by inhibiting the activation of protease activated receptor 1, which reduces the expression of HSP90ß and the interaction between HSP90ß and transforming growth factor-ß (TGFß) receptor II and inhibits the TGFß/Smad signaling pathway. In conclusion, Vorapaxar inhibits the activation of pulmonary fibroblasts induced by thrombin by targeting protease activated receptor 1 and alleviates BLM-induced pulmonary fibrosis in mice.


Assuntos
Fibrose Pulmonar Idiopática , Receptor PAR-1 , Animais , Camundongos , Bleomicina/toxicidade , Fibroblastos , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais , Fator de Transcrição STAT1/metabolismo , Trombina/metabolismo , Fator de Crescimento Transformador beta/metabolismo
6.
Phytomedicine ; 112: 154687, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36804756

RESUMO

BACKGROUND: Hepatocellular carcinoma has high ability of vascular invasion and metastasis. Vasculogenic mimicry (VM) is closely related to the metastasis and recurrence of hepatocellular carcinoma (HCC). According to previous research, Chloranthus henryi has anti-tumor effect, but its molecular mechanism in the treatment of HCC has not yet been stated. PURPOSE: In our study, we aimed to investigate the effect of the extract of Chloranthus henryi in HCC and its target and molecular mechanism. We hoped to explore potential drugs for HCC treatment. STUDY DESIGN/METHODS: In this study, we isolated a chalcone compound from Chloranthus henryi, compound 4, identified as flavokawain A (FKA). We determined the anti-HCC effect of FKA by MTT and identified the target of FKA by molecular docking and CETSA. Hepatoma cells proliferation, migration, invasion, and VM formation were examined using EDU, wound healing, transwell, vasculogenic mimicry, and IF. WB, RT-PCR, and cell transfection were used to explore the mechanism of FKA on hepatoma cells. Tissue section staining is mainly used to demonstrate the effect of FKA on HCC in vivo. RESULTS: We confirmed that FKA can directly interact with CXCL12 and HCC proliferation, migration, invasion, and VM formation were all inhibited through reversing the EMT progress in vitro and in vivo through the PI3K/Akt/NF-κB signaling pathway. Additionally, by overexpressing and knocking down CXCL12, we got the same results. CONCLUSION: FKA attenuated proliferation, invasion and metastatic and reversed EMT in HCC via PI3K/Akt/HIF-1α/NF-κB/Twist1 pathway by targeting CXCL12. This study proposed that FKA may be a candidate drug and prospective strategy for HCC therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Proteínas Proto-Oncogênicas c-akt , NF-kappa B , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Movimento Celular , Transição Epitelial-Mesenquimal , Quimiocina CXCL12
7.
Inflammation ; 45(3): 1076-1088, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34822072

RESUMO

The emergence of severe acute syndrome coronavirus 2 (SARS-CoV-2) in December 2019 has led to the global COVID-19 pandemic. Although the symptoms of most COVID-19 patients are mild or self-curable, most of severe patients have sepsis caused by cytokine storms, which greatly increases the case fatality rate. Moreover, there is no effective drug that can limit the novel coronavirus thus far, so it is more needed to develop antiviral drugs for the SARS-CoV-2. In our research, we employed the techniques of molecular docking to screen 35 flavonoid compounds among which 29 compounds have Z-scores lower than - 6. Then, ( -)-gallocatechin gallate, ( +)-gallocatechin and baicalein were identified to have potent inhibitory activity against SARS-CoV-2 Mpro with IC50 values of 5.774 ± 0.805 µM, 13.14 ± 2.081 µM and 5.158 ± 0.928 µM respectively by FRET assay. Molecular docking results also showed that ( -)-gallocatechin gallate, ( +)-gallocatechin and baicalein can non-covalently bind to Mpro through π-π stacking and hydrogen bonds in the Cys145 catalytic site. We further evaluated the effect of ( -)-gallocatechin gallate and baicalein on cytokine storms using a mouse model of sepsis. ( -)-Gallocatechin gallate and baicalein significantly reduced sepsis of mouse models on weight, murine sepsis score, and survival rate and reduced the inflammatory factor levels, such as TNF-α, IL-1α, IL-4, and IL-10. Overall, ( -)-gallocatechin gallate and baicalein show certain potential of treatment against COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Sepse , Animais , Antivirais/química , Antivirais/farmacologia , Antivirais/uso terapêutico , Catequina/análogos & derivados , Proteases 3C de Coronavírus , Síndrome da Liberação de Citocina , Flavanonas , Humanos , Camundongos , Simulação de Acoplamento Molecular , Pandemias , Inibidores de Proteases/farmacologia , SARS-CoV-2 , Sepse/tratamento farmacológico
8.
Front Pharmacol ; 12: 669642, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220507

RESUMO

The coronavirus disease 2019 (COVID-19) has spread widely around the world and has seriously affected the human health of tens of millions of people. In view of lacking anti-virus drugs target to SARS-CoV-2, there is an urgent need to develop effective new drugs. In this study, we reported our discovery of SARS-CoV-2 Mpro inhibitors. We selected 15 natural compounds, including 7 flavonoids, 3 coumarins, 2 terpenoids, one henolic, one aldehyde and one steroid compound for molecular docking and enzymatic screening. Myricetin were identified to have potent inhibit activity with IC50 3.684 ± 0.076 µM in the enzyme assay. The binding pose of Myricetin with SARS-CoV-2 Mpro was identified using molecular docking method. In the binding pocket of SARS-CoV-2 Mpro, the chromone ring of Myricetin interacts with His41 through π-π stacking, and the 3'-, 4'- and 7-hydroxyl of Myricetin interact with Phe140, Glu166and Asp187 through hydrogen bonds. Significantly, our results showed that Myricetin has potent effect on bleomycin-induced pulmonary inflammation by inhibiting the infiltration of inflammatory cells and the secretion of inflammatory cytokines IL-6, IL-1α, TNF-α and IFN-γ. Overall, Myricetin may be a potential drug for anti-virus and symptomatic treatment of COVID-19.

9.
Phytomedicine ; 91: 153704, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34419736

RESUMO

BACKGROUND: COVID-19 (Coronavirus Disease-2019) has spread widely around the world and impacted human health for millions. The lack of effective targeted drugs and vaccines forces scientific world to search for new effective antiviral therapeutic drugs. It has reported that flavonoids have potential inhibitory activity on SARS-CoV-2 Mpro and anti-inflammatory properties. Dihydromyricetin, as a flavonol, also has antiviral and anti-inflammatory potential. However, the inhibition of dihydromyricetin on SARS-CoV-2 Mpro and the protective effect of dihydromyricetin on pulmonary inflammation and fibrosis have not been proved and explained. PURPOSE: The coronavirus main protease (Mpro) is essential for SARS-CoV-2 replication and to be recognized as an attractive drug target, we expect to find the inhibitor of Mpro. Novel coronavirus infection can cause severe inflammation and even sequelae of pulmonary fibrosis in critically ill patients. We hope to find a drug that can not only inhibit virus replication but also alleviate inflammation and pulmonary fibrosis in patients. METHODS: FRET-based enzymatic assay was used to evaluate the inhibit activity of dihydromyricetin on SARS-CoV-2 Mpro. Molecular docking was used to identify the binding pose of dihydromyricetin with SARS-CoV-2 Mpro. The protective effects of dihydromyricetin against BLM-induced pulmonary inflammation and fibrosis were investigated in C57BL6 mice. BALF and lung tissue were collected for inflammation cells count, ELISA, masson and HE staining, western blotting and immunohistochemistry to analyze the effects of dihydromyricetin on pulmonary inflammation and fibrosis. MTT, western blotting, reverse transcription-polymerase chain reaction (RT-PCR) and wound healing were used to analyze the effects of dihydromyricetin on lung fibrosis mechanisms in Mlg cells. RESULTS: In this study, we found that dihydromyricetin is a potent inhibitor targeting the SARS-CoV-2 Mpro with a half-maximum inhibitory concentration (IC50) of 1.716 ± 0.419 µM, using molecular docking and the FRET-based enzymatic assay. The binding pose of dihydromyricetin with SARS-CoV-2 Mpro was identified using molecular docking method. In the binding pocket of SARS-CoV-2 Mpro, the dihydrochromone ring of dihydromyricetin interact with the imidazole side chain of His163 through π-π stacking. The 1-oxygen of dihydromyricetin forms a hydrogen bond with the backbone nitrogen of Glu166. The 3-, 7-, 3'- and 4'-hydroxyl of dihydromyricetin interact with Gln189, Leu141, Arg188 and Thr190 through hydrogen bonds. Moreover, our results showed that dihydromyricetin can significantly alleviate BLM-induced pulmonary inflammation by inhibiting the infiltration of inflammation cells and the secretion of inflammation factors in the early process and also ameliorate pulmonary fibrosis by improving pulmonary function and down-regulate the expression of α-SMA and fibronectin in vivo. Our results also showed that dihydromyricetin inhibits the migration and activation of myofibroblasts and extracellular matrix production via transforming growth factor (TGF)-ß1/Smad signaling pathways. CONCLUSION: Dihydromyricetin is an effective inhibitor for SARS-CoV-2 Mpro and it prevents BLM-induced pulmonary inflammation and fibrosis in mice. Dihydromyricetin will be a potential medicine for the treatment of COVID-19 and its sequelae.


Assuntos
Proteases 3C de Coronavírus/antagonistas & inibidores , Flavonóis/farmacologia , Inibidores de Proteases , SARS-CoV-2 , Replicação Viral , Animais , Antivirais/farmacologia , COVID-19 , Fibrose , Humanos , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA