Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
EMBO J ; 42(7): e111112, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36799040

RESUMO

Brain metastasis, most commonly originating from lung cancer, increases cancer morbidity and mortality. Although metastatic colonization is the rate-limiting and most complex step of the metastatic cascade, the underlying mechanisms are poorly understood. Here, in vivo genome-wide CRISPR-Cas9 screening revealed that loss of interferon-induced transmembrane protein 1 (IFITM1) promotes brain colonization of human lung cancer cells. Incipient brain metastatic cancer cells with high expression of IFITM1 secrete microglia-activating complement component 3 and enhance the cytolytic activity of CD8+ T cells by increasing the expression and membrane localization of major histocompatibility complex class I. After activation, microglia (of the innate immune system) and cytotoxic CD8+ T lymphocytes (of the adaptive immune system) were found to jointly eliminate cancer cells by releasing interferon-gamma and inducing phagocytosis and T-cell-mediated killing. In human cancer clinical trials, immune checkpoint blockade therapy response was significantly correlated with IFITM1 expression, and IFITM1 enhanced the brain metastasis suppression efficacy of PD-1 blockade in mice. Our results exemplify a novel mechanism through which metastatic cancer cells overcome the innate and adaptive immune responses to colonize the brain, and suggest that a combination therapy increasing IFITM1 expression in metastatic cells with PD-1 blockade may be a promising strategy to reduce metastasis.


Assuntos
Neoplasias Encefálicas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Linfócitos T CD8-Positivos , Receptor de Morte Celular Programada 1 , Neoplasias Pulmonares/patologia , Encéfalo/patologia
2.
J Biol Chem ; 293(13): 4883-4892, 2018 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-29382726

RESUMO

Mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) integrates various environmental signals to regulate cell growth and metabolism. DEPTOR, also termed DEPDC6, is an endogenous inhibitor of mTORC1 and mTORC2 activities. The abundance of DEPTOR centrally orchestrates the mTOR signaling network. However, the mechanisms by which DEPTOR stability is regulated are still elusive. Here, we report that OTU domain-containing ubiquitin aldehyde-binding protein 1 (OTUB1) specifically deubiquitinates DEPTOR in a deubiquitination assay. We found that OTUB1 directly interacted with DEPTOR via its N-terminal domain, deubiquitinated DEPTOR, and thereby stabilized DEPTOR in a Cys-91-independent but Asp-88-dependent manner, suggesting that OTUB1 targets DEPTOR for deubiquitination via a deubiquitinase activity-independent non-canonical mechanism. The interaction between OTUB1 and DEPTOR was enhanced when the cells were treated with amino acids. Moreover, OTUB1 suppressed amino acid-induced activation of mTORC1 in a DEPTOR-dependent manner and thereby ultimately controlled cellular autophagy, cell proliferation, and size. Our findings reveal a mechanism that stabilizes the mTORC1 inhibitor DEPTOR via OTUB1's deubiquitinase activity. Our insights may inform research into various mTOR activity-related diseases, such as cancer, and may contribute to the identification of new diagnostic markers and therapeutic strategies for cancer treatments.


Assuntos
Autofagia , Proliferação de Células , Cisteína Endopeptidases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Ubiquitinação , Cisteína Endopeptidases/genética , Enzimas Desubiquitinantes , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Domínios Proteicos , Estabilidade Proteica
3.
Biochem Biophys Res Commun ; 495(2): 2092-2097, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29198712

RESUMO

FBW7, a key component of SCFFBW7 E3 ubiquitin ligase, targets various proteins for degradation via the conserved Cdc4 phosphodegron (CPD) in substrates. In this study, we report that KLF10 is degraded by FBW7 via a conserved CPD. Through systematic analysis of the degradation of KLF transcription factors by FBW7, we identified KLF10 as a novel degradation target of FBW7. Ectopic expression of FBW7 markedly promoted the degradation of KLF10 while knockdown of endogenous FBW7 increased the protein levels of KLF10. In addition, simultaneous mutations of both threonine 82 (T82) and serine 86 (S86) significantly reduced the FBW7-mediated KLF10 degradation. Moreover, KLF10 containing a conserved putative CPD (TPPXSP) from amino acids 82 to 87, directly interacted with WD40 domain of FBW7 in a phosphorylation-dependent manner. Importantly, FBW7 could reverse the KLF10-mediated inhibition of Smad7 activity. Thus, our study uncovers a novel regulatory mechanism underlying which KLF10 stability and its biological function are mediated by FBW7.


Assuntos
Fatores de Transcrição de Resposta de Crescimento Precoce/metabolismo , Proteína 7 com Repetições F-Box-WD/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Ubiquitina/metabolismo , Proteínas Ubiquitinadas/metabolismo , Ubiquitinação/fisiologia , Sítios de Ligação , Fatores de Transcrição de Resposta de Crescimento Precoce/química , Ativação Enzimática , Proteína 7 com Repetições F-Box-WD/química , Células HEK293 , Células HeLa , Humanos , Fatores de Transcrição Kruppel-Like/química , Ligação Proteica , Mapeamento de Interação de Proteínas , Especificidade por Substrato , Proteínas Ubiquitinadas/química
4.
Int J Mol Sci ; 18(10)2017 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-28937654

RESUMO

Plant CIRCADIAN CLOCK ASSOCIATED1 (CCA1)-like proteins are a class of single-repeat MYELOBLASTOSIS ONCOGENE (MYB) transcription factors generally featured by a highly conserved motif SHAQK(Y/F)F, which play important roles in multiple biological processes. Soybean is an important grain legume for seed protein and edible vegetable oil. However, essential understandings regarding CCA1-like proteins are very limited in soybean. In this study, 54 CCA1-like proteins were identified by data mining of soybean genome. Phylogenetic analysis indicated that soybean CCA1-like subfamily showed evolutionary conservation and diversification. These CCA1-like genes displayed tissue-specific expression patterns, and analysis of genomic organization and evolution revealed 23 duplicated gene pairs. Among them, GmMYB138a was chosen for further investigation. Our protein-protein interaction studies revealed that GmMYB138a, but not its alternatively spliced isoform, interacts with a 14-3-3 protein (GmSGF14l). Although GmMYB138a was predominately localized in nucleus, the resulting complex of GmMYB138a and GmSGF14l was almost evenly distributed in nucleus and cytoplasm, supporting that 14-3-3s interact with their clients to alter their subcellular localization. Additionally, qPCR analysis suggested that GmMYB138a and GmSGF14l synergistically or antagonistically respond to drought, cold and salt stresses. Our findings will contribute to future research in regard to functions of soybean CCA1-like subfamily, especially regulatory mechanisms of GmMYB138a in response to abiotic stresses.


Assuntos
Glycine max/metabolismo , Proteínas de Plantas/metabolismo , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Estudo de Associação Genômica Ampla/métodos , Proteínas de Plantas/genética , Ligação Proteica/genética , Ligação Proteica/fisiologia , Glycine max/genética
5.
Sci Rep ; 8(1): 15621, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30353051

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) is one of the most ruinous diseases in pig production. Our previous work showed that Tongcheng pigs (TC) were less susceptible to PRRS virus (PRRSV) than Large White (LW) pigs. To elucidate the difference in PRRSV resistance between the two breeds, small RNA-seq and ribo-zero RNA-seq were used to identify differentially expressed non-coding RNAs (including miRNAs and lincRNAs) responded to PRRSV in porcine alveolar macrophages (PAMs) from TC and LW pigs. Totally, 250 known mature miRNAs were detected. For LW pigs, there were 44 down-regulated and 67 up-regulated miRNAs in infection group; while for TC pigs, 12 down-regulated and 23 up-regulated miRNAs in TC infection group were identified. The target genes of the common differentially expressed miRNAs (DEmiRNAs) in these two breeds were enriched in immune-related processes, including apoptosis process, inflammatory response, T cell receptor signaling pathway and so on. In addition, 5 shared DEmiRNAs (miR-181, miR-1343, miR-296-3p, miR-199a-3p and miR-34c) were predicted to target PRRSV receptors, of which miR-199a-3p was validated to inhibit the expression of CD151. Interestingly, miR-378 and miR-10a-5p, which could inhibit PRRSV replication, displayed higher expression level in TC control group than that in LW control group. Contrarily, miR-145-5p and miR-328, which were specifically down-regulated in LW pigs, could target inhibitory immunoreceptors and may involve in immunosuppression caused by PRRSV. This indicates that DEmiRNAs are involved in the regulation of the immunosuppression and immune escape of the two breeds. Furthermore, we identified 616 lincRNA transcripts, of which 48 and 30 lincRNAs were differentially expressed in LW and TC pigs, respectively. LincRNA TCONS_00125566 may play an important role in the entire regulatory network, and was predicted to regulate the expression of immune-related genes through binding with miR-1343 competitively. In conclusion, this study provides an important resource for further revealing the interaction between host and virus, which will specify a new direction for anti-PRRSV research.


Assuntos
Macrófagos Alveolares/metabolismo , Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/isolamento & purificação , RNA Longo não Codificante/genética , Suínos/genética , Transcriptoma , Animais , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno , Macrófagos Alveolares/virologia , MicroRNAs/genética , RNA Mensageiro/genética , Suínos/virologia
6.
Gene ; 563(1): 63-71, 2015 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-25752288

RESUMO

Abiotic stresses usually cause H2O2 accumulation, with harmful effects, in plants. Catalase may play a key protective role in plant cells by detoxifying this excess H2O2. Pitaya (Hylocereus undatus) shows broad ecological adaptation due to its high tolerance to abiotic stresses, e.g. drought, heat and poor soil. However, involvement of the pitaya catalase gene (HuCAT) in tolerance to abiotic stresses is unknown. In the present study, a full-length HuCAT3 cDNA (1870 bp) was isolated from pitaya based on our previous microarray data and RACE method. The cDNA sequence and deduced amino acid sequence shared 73-77% and 75-80% identity with other plant catalases, respectively. HuCAT3 contains conserved catalase family domain and catalytic sites. Pairwise comparison and phylogenetic analysis indicated that HuCAT3 is most similar to Eriobotrya japonica CAT, followed by Dimocarpus longan CAT and Nicotiana tabacum CAT1. Expression profile analysis demonstrated that HuCAT3 is mainly expressed in green cotyledons and mature stems, and was regulated by H2O2, drought, cold and salt stress, whereas, its expression patterns and maximum expression levels varied with stress types. HuCAT activity increased as exposure to the tested stresses, and the fluctuation of HuCAT activity was consistent with HuCAT3 mRNA abundance (except for 0.5 days upon drought stress). HuCAT3 mRNA elevations and HuCAT activities changes under cold stress were also in conformity with the cold tolerances among the four genotypes. The obtained results confirmed a major role of HuCAT3 in abiotic stress response of pitaya. This may prove useful in understanding pitaya's high tolerance to abiotic stresses at molecular level.


Assuntos
Cactaceae/genética , Catalase/genética , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Sequência de Aminoácidos , Cactaceae/efeitos dos fármacos , Cactaceae/fisiologia , Catalase/metabolismo , Clonagem Molecular , Resposta ao Choque Frio/genética , Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA