Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Environ Sci Technol ; 57(6): 2538-2547, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36720085

RESUMO

Appropriate inhibitors might play important roles in achieving ammonia retention in biological wastewater treatment and its reuse in agriculture. In this study, the feasibility of epsilon-poly-l-lysine (ε-PL) as a novel natural ammonia oxidation inhibitor was investigated. Significant inhibition (ammonia oxidation inhibition rate was up to 96.83%) was achieved by treating the sludge with ε-PL (400 mg/L, 12 h soaking) only once and maintaining for six cycles. Meanwhile, the organic matter and nitrite removal was not affected. This method was effective under the common environmental conditions of biological wastewater treatment. Metatranscriptome uncovered the possible action mechanisms of ε-PL. The ammonia oxidation inhibition was due to the co-decrease of Nitrosomonas abundance, ammonia oxidation genes, and the cellular responses of Nitrosomonas. Thauera and Dechloromonas could adapt to ε-PL by stimulating stress responses, which maintained the organic matter and nitrite removal. Importantly, ε-PL did not cause the enhancement of antibiotic resistance genes and virulent factors. Therefore, ε-PL showed a great potential of ammonia retention, which could be applied in the biological treatment of wastewater for agricultural reuse.


Assuntos
Polilisina , Águas Residuárias , Polilisina/farmacologia , Amônia , Nitritos , Esgotos
2.
Environ Res ; 212(Pt C): 113356, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35489476

RESUMO

Metagenomic approach was applied to simultaneously reveal the antibiotic resistance genes (ARGs) and antibacterial biocide & metal resistance genes (BMRGs), and the corresponding microbial hosts with high mobility during aerobic granular sludge (AGS) formation process. The results showed that the relative abundance of BMRGs was 88-123 times that of ARGs. AGS process was easier to enrich BMRGs, leading to a greater risk of drug resistance caused by BMRGs than that by ARGs. The enrichments of ARGs and BMRGs in AGS were closely related to several enhanced microbial metabolisms (i.e., cell motility, transposase and ATP-binding cassette transporters) and their corresponding regulatory genes. Several enhanced KEGG Orthologs (KO) functions, such as K01995, K01996, K01997 and K02002, might cause a positive impact on the spread of ARGs and BMRGs, and the main contributors were the largely enriched glycogens accumulating organisms. The first dominant ARGs (adeF) was carried by lots of microbial hosts, which might be enriched and propagated mainly through horizontal gene transfer. Candidatus Competibacter denitrificans simultaneously harbored ARG (cmx) and Cu related RGs (corR). Many enriched bacteria contained simultaneously multiple BMRGs (copR and corR) and mobile genetic elements (integrons and plasmids), granting them high mobility capabilities and contributing to the spread of BMRGs. This study might provide deeper understandings of the proliferation and mobility of ARGs and BMRGs, importantly, highlighted the status of BMRGs, which laid the foundation for the controlling widespread of resistance genes in AGS.


Assuntos
Desinfetantes , Metais Pesados , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Genes Bacterianos , Esgotos
3.
Environ Res ; 215(Pt 1): 114263, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36075475

RESUMO

Antimicrobial resistance has been considered as a great threat to biosecurity and human health. And the transmission of antibiotic resistance genes (ARGs) by conjugated plasmid is a key factor in the prevalence of antimicrobial resistance. Paracetamol (PRC), one of nonopioid analgesics, is an extensively used antipyretic and mild analgesic worldwide available for numerous prescriptions. It was unclear whether PRC could promote the spread of ARGs. Here, it was demonstrated that PRC promoted intergenera conjugative plasmid transfer in an established conjugation model. Both donor and recipient strains treated by PRC emerged the variations of reactive oxygen species (ROS), SOS response and cell membrane permeability. Correspondingly, transcriptome analysis revealed that the gene expression involved in cell membrane permeability and SOS response was up-regulated significantly after PRC exposure. More directly, PRC also increased the expressions of conjugation related genes of trbG and trbP in donor. This study proved for the first time that PRC could enhance the intergenera conjugative plasmid transfer. Collectively, these findings manifested the potential threat associated with the existence of non-antibiotic substance PRC, which could provide an important insight into antimicrobial resistance spread.


Assuntos
Analgésicos não Narcóticos , Antipiréticos , Acetaminofen/farmacologia , Antibacterianos , Transferência Genética Horizontal , Genes Bacterianos , Humanos , Plasmídeos/genética , Espécies Reativas de Oxigênio
4.
Environ Res ; 206: 112606, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-34954146

RESUMO

The partial nitrification-anammox (PN/A) process is a promising method for the treatment of municipal wastewater. It is necessary to clarify the responses of PN/A system to antimicrobial agent triclosan (TCS) widely existed in the influent of wastewater treatment plants. In this study, it was found that PN/A system was robust to cope with 0.5 mg/L TCS. Specifically, the control reactor reached 80% total nitrogen removal efficiency (TNRE) on day 107, while the reactor feeding with 0.5 mg/L TCS reached the same TNRE on day 84. The results of the activity test, high-throughput sequencing and DNA-based stable isotope probing showed that 0.5 mg/L TCS did not impede the performance of ammonia oxidizing archaea, ammonia oxidizing bacteria (Nitrosomonas) and anammox bacteria (Candidatus Brocadia and Ca. Kuenenia), but significant inhibited the nitrite oxidizing bacteria (Nitrospira and Ca. Nitrotoga) and denitrifying bacteria. The influent TCS led to the increase of EPS content and enrichment of four resistance genes (RGs) (intI1, sul1, mexB, and tnpA), which might be two principal mechanisms by which PN/A can resist TCS. In addition, functional bacteria carrying multiple RGs also contributed to the maintenance of PN/A system function. These findings improved the understandings of antimicrobial effects on the PN/A system.


Assuntos
Nitrificação , Triclosan , Oxidação Anaeróbia da Amônia , Reatores Biológicos , Matriz Extracelular de Substâncias Poliméricas , Nitrogênio , Oxirredução , Esgotos , Triclosan/farmacologia , Águas Residuárias
5.
Int J Environ Health Res ; 32(9): 2052-2064, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34102927

RESUMO

Exposure to airborne particulate matter (PM2.5) is associated with cardiovascular diseases. In order to investigate the molecular mechanisms of air pollution-induced CVDs toxicity, human umbilical vein endothelial cells (HUVECs) were exposed to PM2.5 collected from January, 2016 winter in Beijing, China. We performed RNA sequencing to elucidate key molecular mechanism of PM 2.5-mediated toxicity in HUVECs. A total of 1753 genes, 864 up-regulated and 889 down-regulated, were observed to be differentially expressed genes (DEGs). Among these, genes involved in metabolic response, oxidative stress, inflammatory response, and vascular dysfunction were significantly differentially expressed (log2 FC > 4). The results were validated by quantitative real-time PCR (qPCR) and Western blot for CYP1B1, HMOX1, IL8, and GJA4. Pathway analysis revealed that DEGs were involved in the biological processes related to metabolism, inflammation, and host defense against environmental insults. This research is providing a further understanding of the mechanisms underlying PM2.5-induced cardiovascular diseases (CVDs).


Assuntos
Poluentes Atmosféricos , Doenças Cardiovasculares , Poluentes Atmosféricos/toxicidade , Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Material Particulado/toxicidade , Análise de Sequência de RNA
6.
J Environ Manage ; 270: 110872, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32507736

RESUMO

Stable supply of nitrite is often a major obstacle for achieving mainstream anammox due to washout failure of nitrite oxidizers (NOB) at low influent ammonia of municipal wastewater. In this study, an integrated nitrification, partial denitrification and anammox (INPDA) as a one-stage mainstream nitrogen removal alternative was established in a low-oxygen sequencing batch biofilm reactor treating synthetic sewage. The overall nitrogen removal and nitrous oxide (N2O) emission were mainly investigated at 50 mg/L NH4+-N influent with a low carbon/nitrogen (C/N) of 2.5. Continuous operation demonstrated that as high as 98.8% NH4+-N and 94.1% TN were removed in SBBR system. Cyclic experiment verified sequential completion of nitrification, partial denitrification and anammox were responsible for high-rate TN removal. During one typical cycle, the trend of N2O emission was characterized by firstly rapid rise, then fluctuant decrease followed by rapid decrease and finally slow disappearance. The maximum N2O emission rate reached up to 6.7 µg/(L·min) occurred at 75 min. High-throughput sequencing revealed the co-existence of nitrifying, denitrifying and anammox species and large detection of key functional genes (Hzs, Hdh, Hao, Nor) in an oxygen-limited SBBR, thereby highly correlating nitrogen removal and N2O emission characteristics. Nitrogen metabolic pathways analysis further suggest denitratation(NO3--N to NO2--N)-based anammox is a main route for mainstream nitrogen removal. Moreover, N2O might be generated by both hydroxylamine oxidation step in nitrification and also heterotrophic denitrification pathway. The research findings provide more deep understandings of enhanced nitrogen removal and mitigated N2O footprint from a single mainstream anammox-based system.


Assuntos
Nitrificação , Águas Residuárias , Reatores Biológicos , Carbono , Desnitrificação , Nitrogênio , Óxido Nitroso , Oxirredução , Esgotos
7.
J Environ Sci (China) ; 92: 211-223, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32430124

RESUMO

Triclosan (TCS) is commonly found in wastewater treatment plants, which often affects biological treatment processes. The responses of nitrification, antibiotic resistome and microbial community under different TCS concentrations in activated sludge system were evaluated in this study. The experiment was conducted in a sequencing batch reactor (SBR) for 240 days. Quantitative PCR results demonstrated that the abundance of ammonium oxidizing bacteria could be temporarily inhibited by 1 mg/L TCS and then gradually recovered. And the abundances of nitrite oxidizing bacteria (NOB) under 2.5 and 4 mg/L TCS were three orders of magnitude lower than that of seed sludge, which accounted for partial nitrification. When the addition of TCS was stopped, the abundance of NOB increased. The mass balance experiments of TCS demonstrated that the primary removal pathway of TCS changed from adsorption to biodegradation as TCS was continuously added into the SBR system. Moreover, TCS increased the abundance of mexB, indicating the efflux pump might be the main TCS-resistance mechanism. As a response to TCS, bacteria could secrete more protein (PN) than polysaccharide. Three-dimensional excitation-emission matrix revealed that tryptophan PN-like substances might be the main component in PN to resist TCS. High-throughput sequencing found that the relative abundances of Paracoccus, Pseudoxanthomonas and Thauera increased, which could secrete extracellular polymeric substances (EPS). And Sphingopyxis might be the main TCS-degrading bacteria. Overall, TCS could cause partial nitrification and increase the relative abundances of EPS-secreting bacteria and TCS-degrading bacteria.


Assuntos
Nitrificação , Triclosan , Reatores Biológicos , Nitritos , Esgotos , Águas Residuárias
8.
Zhonghua Nan Ke Xue ; 24(2): 133-137, 2018 Feb.
Artigo em Zh | MEDLINE | ID: mdl-30156072

RESUMO

OBJECTIVE: To compare the safety and effectiveness of shovel-shaped electrode transurethral plasmakinetic enucleation of the prostate (PKEP) with those of plasmakinetic resection of the prostate (PKRP) in the treatment of benign prostatic hyperplasia (BPH). METHODS: We retrospectively analyzed the clinical data about 78 BPH patients received in Shanghai Ninth People's Hospital from June 2016 to January 2017, 39 treated by shovel-shaped electrode PKEP and the other 39 by PKRP. We observed the patients for 6 months postoperatively and compared the effects and safety of the two surgical strategies. RESULTS: No statistically significant difference was observed between the PKEP and PKRP groups in the operation time (ï¼»69.3 ± 8.8ï¼½ vs ï¼»72.2 ± 7.9ï¼½ min, P = 0.126), but the former, as compared with the latter, showed a markedly less postoperative loss of hemoglobin (ï¼»3.9 ± 2.8ï¼½ vs ï¼»13.9 ± 5.2ï¼½ g/L, P <0.001) and shorter bladder irrigation time (ï¼»12.5 ± 1.2ï¼½ vs ï¼»43.4 ± 2.8ï¼½ h, P <0.001), catheterization time (ï¼»64.0 ± 4.5ï¼½ vs ï¼»84.8 ± 3.0ï¼½ h, P <0.001) and hospital stay (ï¼»3.1 ± 0.3ï¼½ vs ï¼»5.5 ± 0.4ï¼½ d, P <0.001). There were no statistically significant differences between the PKEP and PKRP groups in the postoperative maximum urinary flow rate (Qmax) (ï¼»21.62 ± 1.07ï¼½ vs ï¼»21.03 ± 0.96ï¼½ ml/s, P = 0.12), International Prostate Symptoms Score (IPSS) (5.85 ± 0.90 vs 6.03 ± 0.81, P = 0.279), quality of life score (QoL) (2.0 ± 0.73 vs 2.28 ± 0.72, P = 0.09), postvoid residual urine volume (PVR) (ï¼»19.59 ± 6.01ï¼½ vs ï¼»20.21 ± 5.16ï¼½ ml, P = 0.629), or the incidence rates of urinary incontinence (2.56% ï¼»1/39ï¼½ vs 7.69% ï¼»3/39ï¼½, P >0.05) and other postoperative complications. CONCLUSIONS: Both PKEP and PKRP are effective methods for the treatment of BPH, but PKEP is worthier of clinical recommendation for a better safety profile, more thorough removal of the prostate tissue, less blood loss, shorter hospital stay, and better improved quality of life of the patient.


Assuntos
Eletrodos , Hiperplasia Prostática/cirurgia , Ressecção Transuretral da Próstata/métodos , China , Eletrodos/efeitos adversos , Desenho de Equipamento , Humanos , Masculino , Qualidade de Vida , Estudos Retrospectivos , Ressecção Transuretral da Próstata/instrumentação , Resultado do Tratamento
9.
Appl Microbiol Biotechnol ; 98(7): 3339-54, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24318009

RESUMO

The abundance and diversity of amoA genes of ammonia-oxidizing archaea (AOA) and bacteria (AOB) were investigated in ten wastewater treatment systems (WTSs) by polymerase chain reaction (PCR), cloning, sequencing, and quantitative real-time PCR (qPCR). The ten WTSs included four full-scale municipal WTSs, three full-scale industrial WTSs, and three lab-scale WTSs. AOB were present in all the WTSs, whereas AOA were detected in nine WTSs. QPCR data showed that AOB amoA genes (4.625 × 10(4)-9.99 × 10(9) copies g(-1) sludge) outnumbered AOA amoA genes (

Assuntos
Amônia/metabolismo , Archaea/classificação , Bactérias/classificação , Biota , Oxirredutases/genética , Águas Residuárias/microbiologia , Archaea/enzimologia , Archaea/genética , Archaea/metabolismo , Bactérias/enzimologia , Bactérias/genética , Bactérias/metabolismo , DNA Arqueal/química , DNA Arqueal/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Dados de Sequência Molecular , Oxirredução , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
10.
J Hazard Mater ; 469: 133869, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38422733

RESUMO

Whether it's necessary to extra chemical synthesis steps to modify nZVI in peroxymonosulfate (PMS) activation process are worth to further investigation. The 56 mg/L nZVI/153.65 mg/L PMS and 56 mg/L sulfidated nZVI (S-nZVI) (S/Fe molar ratio = 1:5)/153.65 mg/L PMS) processes could effectively attain 97.7% (with kobs of 3.7817 min-1) and 97.0% (with kobs of 3.4966 min-1) of the degradation of 20 mg/L sulfadiazine (SDZ) in 1 min, respectively. The nZVI/PMS system could quickly achieve 85.5% degradation of 20 mg/L SDZ in 1 min and effectively inactivate 99.99% of coexisting Pseudomonas. HLS-6 (5.81-log) in 30 min. Electron paramagnetic resonance tests and radical quenching experiments determined SO4•-, HO•, 1O2 and O2•- were responsible for SDZ degradation. The nZVI/PMS system could still achieve the satisfactory degradation efficiency of SDZ under the influence of humic acid (exceeded 96.1%), common anions (exceeded 67.3%), synthetic wastewater effluent (exceeded 90.7%) and real wastewater effluent (exceeded 78.7%). The high degradation efficiency of tetracycline (exceeded 98.9%) and five common disinfectants (exceeded 96.3%) confirmed the applicability of the two systems for pollutants removal. It's no necessary to extra chemical synthesis steps to modify nZVI for PMS activation to remove both chemical and biological pollutants.


Assuntos
Poluentes Ambientais , Peróxidos , Poluentes Químicos da Água , Ferro , Sulfadiazina/farmacologia , Águas Residuárias , Poluentes Químicos da Água/análise
11.
J Hazard Mater ; 476: 135197, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39018601

RESUMO

Benzylalkyldimethylethyl ammonium compounds (BAC) and polyvinyl chloride microplastics (PVC MPs), as the frequently detected pollutants in wastewater treatment plants (WWTPs), have attracted more concerns on their ecosystem risks. Therefore, this study investigated how the sulfur autotrophic denitrification (SAD) system responded to the single and joint stress of PVC MPs (1, 10 and 100 mg/L) and BAC (0.5, 5 and 10 mg/L). After 100 days of operation, the presence of 10 mg/L BAC led to obviously inhibitory effects on system performance and microbial metabolic activity. And the additions of PVC MPs or/and BAC stimulated the proliferation of intracellular resistance genes (RGs), whereas exposure to BAC increased the abundances of extracellular RGs and free RGs in water more significantly. Compared to the joint stress, BAC single stress resulted in higher abundances of free RGs in water, which further increased the risk of RGs propagation. Moreover, the interaction between mobile genetic elements and extracellular polymeric substances further increased the spread of RGs. Pathogens might be the potential hosts of RGs and enriched in SAD system and plastisphere, thereby leading to more serious ecological risks. This study will broaden the understanding of the environmental hazards posed by PVC MPs and BAC in WWTPs.

12.
Bioresour Technol ; 395: 130390, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301944

RESUMO

In this study, H2O2 (0.1 ‰) and NH2-MIL-101(Fe)-driven (150 mg/L) photo-Fenton-coupled anammox were proposed to simultaneously improve the removal efficiency of nitrogen and humic acid. Long-term experiments showed that the total nitrogen removal efficiency was increased by the photo-Fenton reaction to 91.9 ± 1.5 % by altering the bioavailability of refractory organics. Correspondingly, the total organic carbon removal efficiency was significantly increased. Microbial community analyses indicated that Candidatus_Brocadia maintained high activity during photo-Fenton reaction and was the most abundant genus in the reactor. Dissimilatory nitrate reduction to ammonium process and denitrification process were enhanced, resulting in reduced NO3--N production. The establishment of electron transfer between microorganisms and NH2-MIL-101 (Fe) improved the charge separation efficiency of the quantum dots and increased the intracellular adenosine triphosphate content of anammox bacteria. These results indicated that photo-Fenton-anammox process promoted the removal of nitrogen and refractory organics in one reactor which had good economic value and application prospects.


Assuntos
Compostos de Amônio , Desnitrificação , Estruturas Metalorgânicas , Oxirredução , Nitrogênio , Peróxido de Hidrogênio , Oxidação Anaeróbia da Amônia , Elétrons , Reatores Biológicos/microbiologia , Esgotos
13.
Sci Total Environ ; 930: 172715, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38663595

RESUMO

Antibiotics and quaternary ammonium compounds (QACs) usually co-exist in wastewater treatment plants. Hence, three sequencing batch reactors were established and named as R1, R2 and R3, to investigate the effects of individual and combined exposure of different concentrations of ciprofloxacin (CIP) (0.2, 1.0 and 2.0 mg/L) and dialkyldimethyl ammonium compound (DADMAC) (0.4, 2.0 and 4.0 mg/L) on the performance, microbial community structures and resistance genes (RGs) in nitrifying system during 150 days. Results showed that CIP had a slight effect on ammonia oxidation activity, while 2.0 and 4.0 mg/L DADAMAC could obviously inhibit it, and the combination of CIP and DADMAC had a synergistic inhibitory effect. Besides, both CIP and DADMAC caused partial nitrification, and the order of nitrite accumulation rate was ranked as R3 > R2 > R1. The combination of CIP and DADMAC had an antagonistic effect on the increase of sludge particle size and α-Helix/(ß-Sheet + Random coil) was lowest in R3 (0.40). The combination of CIP and DADMAC synergistically stimulated most intracellular RGs in sludge, and the relative abundances of target RGs (e.g., qacEdelta1-01, qacH-01 and qnrS) at the end of operation in R3 were increased by 4.61-18.19 folds compared with those in CK, which were 1.34-5.57 folds higher than the R1 and R2. Moreover, the combination of CIP and DADMAC also promoted the transfer of RGs from sludge to water and enriched more potential hosts of RGs, further promoting the spread of RGs in nitrifying system. Thus, the combined pollution of CIP and DADMAC in wastewaters should attract more attentions.


Assuntos
Antibacterianos , Ciprofloxacina , Nitrificação , Eliminação de Resíduos Líquidos , Ciprofloxacina/farmacologia , Nitrificação/efeitos dos fármacos , Antibacterianos/farmacologia , Eliminação de Resíduos Líquidos/métodos , Compostos de Amônio Quaternário , Poluentes Químicos da Água , Águas Residuárias , Reatores Biológicos , Farmacorresistência Bacteriana/genética
14.
Sci Total Environ ; 933: 173190, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38744392

RESUMO

Phenacetin (PNCT) belongs to one of the earliest synthetic antipyretics. However, impact of PNCT on nitrifying microorganisms in wastewater treatment plants and its potential microbial mechanism was still unclear. In this study, PN could be initiated within six days by PNCT anaerobic soaking treatment (8 mg/L). In order to improve the stable performance of PN, 21 times of PNCT aerobic soaking treatment every three days was conducted and PN was stabilized for 191 days. After PN was damaged, ten times of PNCT aerobic soaking treatment every three days was conducted and PN was recovered after once soaking, maintained over 88 days. Ammonia oxidizing bacteria might change the dominant oligotype to gradually adjust to PNCT, and the increase of abundance and activity of Nitrosomonas promoted the initiation of PN. For nitrite-oxidizing bacteria (NOB), the increase of Candidatus Nitrotoga and Nitrospira destroyed PN, but PN could be recovered after once aerobic soaking illustrating NOB was not resistant to PNCT. KEGG and COG analysis suggested PNCT might disrupt rTCA cycle of Nitrospira, resulting in the decrease of relative abundance of Nitrospira. Moreover, PNCT did not lead to the sharp increase of absolute abundances of antibiotic resistance genes (ARGs), and the risk of ARGs transmission was negligible.


Assuntos
Nitrificação , Fenacetina , Eliminação de Resíduos Líquidos , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/microbiologia , Resistência Microbiana a Medicamentos/genética , Poluentes Químicos da Água/análise , Bactérias/metabolismo
15.
J Hazard Mater ; 470: 134254, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38615644

RESUMO

The existence of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) has been a global public environment and health issue. Due to the different cell structures, gram-positive/negative ARB exhibit various inactivation mechanisms in water disinfection. In this study, a gram-negative ARB Escherichia coli DH5α (E. coli DH5α) was used as a horizontal gene transfer (HGT) donor, while a gram-positive ARB Bacillus as a recipient. To develop an efficient and engineering applicable method in water disinfection, ARB and ARGs removal efficiency of Fe(VI) coupled peroxydisulfate (PDS) or peroxymonosulfate (PMS) was compared, wherein hydroxylamine (HA) was added as a reducing agent. The results indicated that Fe(VI)/PMS/HA showed higher disinfection efficiency than Fe(VI)/PDS/HA. When the concentration of each Fe(VI), PMS, HA was 0.48 mM, 5.15 log E. coli DH5α and 3.57 log Bacillus lost cultivability, while the proportion of recovered cells was 0.0017 % and 0.0566 %, respectively, and HGT was blocked. Intracellular tetA was reduced by 2.49 log. Fe(IV) and/or Fe(V) were proved to be the decisive reactive species. Due to the superiority of low cost as well as high efficiency and practicality, Fe(VI)/PMS/HA has significant application potential in ARB, ARGs removal and HGT inhibition, offering a new insight for wastewater treatment.


Assuntos
Transferência Genética Horizontal , Ferro , Peróxidos , Peróxidos/química , Ferro/química , Purificação da Água/métodos , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Farmacorresistência Bacteriana/genética , Desinfecção/métodos , Sulfatos/química , Antibacterianos/farmacologia , Antibacterianos/química , Bacillus/genética , Bacillus/efeitos dos fármacos , Bacillus/metabolismo
16.
J Hazard Mater ; 476: 135070, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38944986

RESUMO

Dialkyldimethyl ammonium compound (DADMAC) is widely used in daily life as a typical disinfectant and often co-exists with the heavy metal zinc in sewage environments. This study investigated the effects of co-exposure to zinc (1 mg/L) and DADMAC (0.2-5 mg/L) on the performance, bacterial community, and resistance genes (RGs) in a partial sulfur autotrophic denitrification coupled with anaerobic ammonium oxidation (PSAD-Anammox) system in a sequencing batch moving bed biofilm reactor for 150 days. Co-exposure to zinc and low concentration (0.2 mg/L) DADMAC did not affect the nitrogen removal ability of the PASD-Anammox system, but increased the abundance and transmission risk of free RGs in water. Co-exposure to zinc and medium-to-high (2-5 mg/L) DADMAC led to fluctuations in and inhibition of nitrogen removal, which might be related to the enrichment of heterotrophic denitrifying bacteria dominated by Denitratisoma. Co-exposure to zinc and high concentration DADMAC (5 mg/L) stimulated the secretion of extracellular polymeric substances and increased the proliferation risk of intracellular RGs in sludge. This study provided insights into the application of PSAD-Anammox system and the ecological risks of wastewater containing zinc and DADMAC.

17.
J Hazard Mater ; 476: 135160, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38991646

RESUMO

The heterotrophic nitrification-aerobic denitrification (HNAD) strain Exiguobacterium H1 (H1) was isolated in this study. The changes in nitrogen metabolism functions of H1 strain were discussed in presence of disinfectants chloroxylenol (PCMX) and benzethonium chloride (BEC) alone and combined pollution (PCMX+BEC). The H1 strain could use NH4+-N, NO2--N and NO3--N as nitrogen sources and had good nitrogen removal performance under conditions of C/N ratio 25, pH 5-8, 25-35 oC and sodium acetate as carbon. PCMX and BEC alone exhibited hormesis effects on H1 strain which promoted the growth of H1 strain at low concentrations but inhibited it at high concentrations, and combined pollution showed synergistic inhibitory on H1 strain. H1 strain owned a full nitrogen metabolic pathway according to functional genes quantification. PCMX encouraged nitrification process of H1, while BEC and combined pollution mostly blocked nitrogen removal. PCMX, but not BEC, mainly led to the enrichment of resistance genes. These findings will aid in systematic assessment of contaminant tolerance characteristics of HNAD strain and its application prospects.

18.
J Hazard Mater ; 470: 134132, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554510

RESUMO

The proliferation of antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) caused by antibiotic abuse has raised concerns about the global infectious-disease crisis. This study employed periodate (PI)/ferrate (VI) (Fe (VI)) system to disinfect Gram-negative ARB (Escherichia coli DH5α) and Gram-positive bacteria (Bacillus subtilis ATCC6633). The PI/Fe (VI) system could inactivate 1 × 108 CFU/mL of Gram-negative ARB and Gram-positive bacteria by 4.0 and 2.8 log in 30 min. Neutral and acidic pH, increase of PI dosage and Fe (VI) dosage had positive impacts on the inactivation efficiency of ARB, while alkaline solution and the coexistence of 10 mM Cl-, NO3-, SO42- and 20 mg/L humic acid had slightly negative impacts. The reactive species generated by PI/Fe (VI) system could disrupt the integrity of cell membrane and wall, leading to oxidative stress and lipid peroxidation. Intracellular hereditary substance, including DNA and ARGs (tetA), would leak into the external environment through damaged cells and be degraded. The electron spin resonance analysis and quenching experiments indicated that Fe (IV)/Fe (V) played a leading role in disinfection. Meanwhile, PI/Fe (VI) system also had an efficient removal effect on sulfadiazine, which was expected to inhibit the ARGs transmission from the source.


Assuntos
Bacillus subtilis , Desinfecção , Ferro , Ferro/química , Desinfecção/métodos , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Farmacorresistência Bacteriana/genética , Desinfetantes/farmacologia , Antibacterianos/farmacologia , Genes Bacterianos/efeitos dos fármacos
19.
J Hazard Mater ; 447: 130758, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36640510

RESUMO

The chloroxylenol (PCMX) degrading strain was successfully isolated from sludge and identified as Rhodococcus ruber (R. ruber). Afterwards, a bioaugmentation system was constructed by seeding R. ruber into nitrifying sludge to fasten degradation efficiency of highly toxic PCMX from wastewater. Results showed that R. ruber presented high PCMX-degrading performance under aerobic conditions, 25 °C, pH 7.0 and inoculum sizes of 4% (v/v). These optimized conditions were used in subsequent bioaugmentation experiment. In bioaugmentation system, R. ruber could detoxify nitrifiers by degrading PCMX, and the content of polysaccharide in extracellular polymeric substances increased. The quantitative polymerase chain reaction results exhibited that the absolute abundance of 16S rRNA gene and ammonia oxidizing bacteria (AOB) slightly elevated in bioaugmentation system. After analyzing the results of high-throughput sequencing, it was found that the loaded R. ruber can colonize successfully and turn into dominant strains in sludge system. Molecular docking simulation showed that PCMX had a weaker suppressed effect on AOB than nitrite oxidizing bacteria, and R. ruber can alleviate the adverse effect. This study could provide a novel strategy for potential application in reinforcement of PCMX removal in wastewater treatment.


Assuntos
Rhodococcus , Esgotos , Esgotos/microbiologia , Nitrificação , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Simulação de Acoplamento Molecular , Rhodococcus/genética , Rhodococcus/metabolismo , Amônia/metabolismo , Reatores Biológicos/microbiologia
20.
Sci Total Environ ; 892: 164500, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37257591

RESUMO

To explore the effects of wastewater feeding modes on the formation of aerobic granular sludge (AGS) and the complex relationships between resistance genes and bacteria, two pilot-scale sequencing batch reactors (SBRs) were established. The SBR with influent wastewater introduced uniformly through pipes at bottom was designated as BSBR, and the SBR with inlet wastewater flowing directly from top was TSBR. BSBR formed dense AGS due to uniform wastewater feeding at bottom, while TSBR failed to cultivate AGS. Metagenomic sequencing illustrated that rapid growth of AGS in BSBR was accompanied with increase of antibiotic resistance genes (ARGs) abundance, but ARGs diminished when the size of AGS was stable. The ARGs continued to elevate in TSBR, and abundance of metal resistance genes (MRGs) was always higher than that in BSBR. Two reactors had markedly different bacterial community, microbes in BSBR owned stronger activity, conferred greater potential to proliferate. AdeF in two systems had the most complex gene-bacteria relationships which would undergo HGT within bacterial genus. The different feeding modes of wastewater directly led to the changing size of sludge, which caused knock-on effects of variations in the abundance of microbial communities and resistance genes. This study provided promising suggestions for the rapid cultivation of AGS and control of resistance genes at pilot-scale.


Assuntos
Microbiota , Águas Residuárias , Esgotos/microbiologia , Eliminação de Resíduos Líquidos , Reatores Biológicos/microbiologia , Bactérias/genética , Antibacterianos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA