RESUMO
Objective: To establish a detection method based on Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) that can sensitively detect the second messenger cyclic AMP (cAMP) in the cytoplasm. Methods: The eukaryotic expression vectors of CFTR and YFP-H148Q / I152L were constructed respectively. FRT cells co-expressing CFTR and YFP-H148Q / I152L were obtained by liposome transfection. The expression of CFTR and YFP-H148Q / I152L in FRT cells was observed by an inverted fluorescence microscopy, and flow cytometry was used to detect the purity of cells; The cell model was identified by the fluorescence quenching kinetics test. The validation of the cell model which could screen CFTR modulators was verified by the fluorescence quenching kinetics experiments. The radioimmunoassay was used to detect the cAMP concentration in cytoplasm after adding CFTR activator. Results: The results of the inverted fluorescence microscope showed that CFTR was expressed in the cell membrane and YFP-H148Q / I152L was expressed in the cytoplasm of FRT cells. The FRT cell model stably co-expressing ANO1 and YFP-H148Q / I152L was successfully constructed. The model could screen CFTR modulators, and the slope of fluorescence change and the concentration of CFTR modulators were in a dose-dependent manner. The slope of the fluorescence could reflect the cAMP concentration in the cytoplasm. The cell model could sensitively detect the intracellular cAMP concentration. Conclusion: The cell model could efficiently and sensitively detect the second messenger cAMP concentration in the cytoplasm, and it provided a simple and efficient method for the study of other targets associated cAMP signal.
Assuntos
AMP Cíclico , Regulador de Condutância Transmembrana em Fibrose Cística , Citoplasma , Sistemas do Segundo MensageiroRESUMO
The effects of quinacrine (QA) on heat-induced neuronal injury have been explored, with the intention of understanding the mechanisms of QA protection. Primary cultivated striatum neurons from newborn rats were treated with QA 1h before heat treatment at 43 degrees C which lasted for another 1h, and necrosis and apoptosis were detected by Annexin-V-FITC and propidium iodide (PI) double staining. Neuronal apoptosis was determined using terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling (TUNEL) techniques. Cell membrane fluidity, activity of cytosolic phospholipase A(2) (cPLA(2)) and the level of arachidonic acid (AA) were also examined. Membrane surface ultrastructure of striatum neurons was investigated by atomic force microscopy (AFM). Results showed that heat treatment induced great striatum neurons death, with many dying neurons undergoing necrosis rather than apoptosis. QA alone had little effect on the survival of striatum neurons, while QA pretreatment before heat treatment decreased necrosis. Heat treatment also resulted in decreased membrane fluidity and increased cPLA(2) activity as well as arachidonic acid level; these effects were reversed by QA pretreatment. QA pretreatment also significantly prevented damage to the membrane surface ultrastructure of heat-treated neurons. These results suggest that QA protects striatum neurons against heat-induced neuronal necrosis, and also demonstrate that inhibition of cPLA(2) activity and stabilization of membranes may contribute to protective effect of quinacrine.
Assuntos
Temperatura Alta , Neurônios/efeitos dos fármacos , Quinacrina/farmacologia , Animais , Animais Recém-Nascidos , Apoptose , Ácido Araquidônico/metabolismo , Microscopia de Força Atômica , Necrose , Neurônios/fisiologia , Fosfolipases A2/metabolismo , Ratos , Ratos WistarRESUMO
Although accumulating evidence suggests that there are significant anatomical and histological differences between the sulci and gyri of the cerebral cortex, whether there is a difference in the distribution of interneurons between the two cortical regions remains largely unknown. In this study, we systematically compared the distributions of parvalbumin-positive interneurons among three neighboring gyrus and sulcus pairs-coronal gyrus and cruciate sulcus, anterior ectosylvian gyrus and rostral suprasylvian sulcus, and posterior ectosylvian gyrus and pseudosylvian sulcus-in the adult ferret cerebral cortex. We proposed a method to partition sulci and gyri into several specific subregions through the deepest points of the sulci and the highest points of gyri in the inner and outer cortical contours of coronal sections. We found that the density of parvalbumin-positive interneurons in the gyri was significantly higher than that in the sulci. Further study revealed that the density of PV interneurons in superficial cortical layers (layers 2/3 and layer 4) was comparable among the three pairs of sulci and gyri. However, the density of parvalbumin-positive interneurons in cortical layers 5/6 was significantly higher in gyri than in sulci. These results indicate that parvalbumin-positive interneurons are differently distributed in infragranular layers of cortical sulci and gyri.
Assuntos
Córtex Cerebral/anatomia & histologia , Córtex Cerebral/fisiologia , Furões/fisiologia , Interneurônios/fisiologia , Parvalbuminas/fisiologia , Animais , Mapeamento Encefálico , Contagem de Células , Córtex Cerebral/citologia , Feminino , Imuno-HistoquímicaRESUMO
Opioid abuse is a rapidly growing public health crisis in the USA. Despite extensive research in the past decades, little is known about the etiology of opioid addiction or the neurobiological risk factors that increase vulnerability to opioid use and abuse. Recent studies suggest that the type 2 metabotropic glutamate receptor (mGluR2) is critically involved in substance abuse and addiction. In the present study, we evaluated whether low-mGluR2 expression may represent a risk factor for the development of opioid abuse and addiction using transgenic mGluR2-knockout (mGluR2-KO) rats. Compared to wild-type controls, mGluR2-KO rats exhibited higher nucleus accumbens (NAc) dopamine (DA) and locomotor responses to heroin, higher heroin self-administration and heroin intake, more potent morphine-induced analgesia and more severe naloxone-precipitated withdrawal symptoms. In contrast, mGluR2-KO rats displayed lower motivation for heroin self-administration under high price progressive-ratio (PR) reinforcement conditions. Taken together, these findings suggest that mGluR2 may play an inhibitory role in opioid action, such that deletion of this receptor results in an increase in brain DA responses to heroin and in acute opioid reward and analgesia. Low-mGluR2 expression in the brain may therefore be a risk factor for the initial development of opioid abuse and addiction.
Assuntos
Deleção de Genes , Dependência de Heroína/metabolismo , Heroína/administração & dosagem , Receptores de Glutamato Metabotrópico/deficiência , Esquema de Reforço , Animais , Comportamento Aditivo/genética , Comportamento Aditivo/metabolismo , Comportamento Aditivo/psicologia , Dependência de Heroína/genética , Dependência de Heroína/psicologia , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Ratos , Ratos Transgênicos , Ratos Wistar , Receptores de Glutamato Metabotrópico/genética , AutoadministraçãoRESUMO
Cocaine users show reduced expression of the metabotropic glutamate receptor (mGluR2), but it is not clear whether this is a predisposing trait for addiction or a consequence of drug exposure. In this study, we found that a nonsense mutation at the mGluR2 gene decreased mGluR2 expression and altered the seeking and taking of cocaine. mGluR2 mutant rats show reduced sensitivity to cocaine reward, requiring more cocaine to reach satiation when it was freely available and ceasing their drug-seeking behavior sooner than controls when the response requirement was increased. mGluR2 mutant rats also show a lower propensity to relapse after a period of cocaine abstinence, an effect associated with reduced cocaine-induced dopamine and glutamate overflow in the nucleus accumbens. These findings suggest that mGluR2 polymorphisms or reduced availability of mGluR2 might be risk factors for the initial development of cocaine use but could actually protect against addiction by reducing sensitivity to cocaine reward.
Assuntos
Cocaína/farmacologia , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Masculino , Camundongos , Camundongos Knockout , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Fatores de RiscoRESUMO
The use of prescription opioid analgesics, particularly oxycodone, has dramatically increased, and parallels escalated opioid abuse and drug-related deaths worldwide. Understanding the molecular mechanisms underlying the development of opioid dependence and expanding treatment options to counter prescription opioid abuse has become a critical public health matter. In the present study, we first evaluated the reinforcing effects of oxycodone in a rat model of self-administration and then explored the potential utility of two novel high affinity dopamine D3 receptor (D3R) antagonists/partial agonists, CAB2-015 and BAK4-54, for treatment of prescription opioid abuse and dependence. We found that rats acquired oxycodone self-administration rapidly within a range of unit doses that was similar to that for heroin, confirming that oxycodone has significant abuse potential. Strikingly, pretreatment with either CAB2-015 or BAK4-54 (0.4-10 mg/kg, i.p.) dose-dependently decreased oxycodone self-administration, and shifted the oxycodone dose-response curve downward. Repeated pretreatment with CAB2-015 or BAK4-54 (0.4-4 mg/kg) facilitated extinction and inhibited oxycodone-induced reinstatement of drug-seeking behavior. In addition, pretreatment with CAB2-015 or BAK4-54 (4-10 mg/kg) also dose-dependently decreased oxycodone-enhanced locomotor activity, but only CAB2-015 decreased oral sucrose self-administration. These data suggest that D3R antagonists may be suitable alternatives or adjunctive to opioid-based medications currently used clinically in treating opioid addiction and that the D3R-selective ligands (CAB2-015 or BAK4-54) provide new lead molecules for development.
Assuntos
Comportamento de Procura de Droga/efeitos dos fármacos , Indóis/farmacologia , Naftalenos/farmacologia , Entorpecentes/administração & dosagem , Transtornos Relacionados ao Uso de Opioides/prevenção & controle , Oxicodona/administração & dosagem , Piperazinas/farmacologia , Quinolinas/farmacologia , Receptores de Dopamina D3/agonistas , Receptores de Dopamina D3/antagonistas & inibidores , Animais , Relação Dose-Resposta a Droga , Agonismo Parcial de Drogas , Extinção Psicológica/efeitos dos fármacos , Heroína/administração & dosagem , Masculino , Ratos Long-Evans , AutoadministraçãoRESUMO
Fluorescence polarization microscopy (FPM) aims to detect the dipole orientation of fluorophores and to resolve structural information for labeled organelles via wide-field or confocal microscopy. Conventional FPM often suffers from the presence of a large number of molecules within the diffraction-limited volume, with averaged fluorescence polarization collected from a group of dipoles with different orientations. Here, we apply sparse deconvolution and least-squares estimation to fluorescence polarization modulation data and demonstrate a super-resolution dipole orientation mapping (SDOM) method that resolves the effective dipole orientation from a much smaller number of fluorescent molecules within a sub-diffraction focal area. We further apply this method to resolve structural details in both fixed and live cells. For the first time, we show that different borders of a dendritic spine neck exhibit a heterogeneous distribution of dipole orientation. Furthermore, we illustrate that the dipole is always perpendicular to the direction of actin filaments in mammalian kidney cells and radially distributed in the hourglass structure of the septin protein under specific labelling. The accuracy of the dipole orientation can be further mapped using the orientation uniform factor, which shows the superiority of SDOM compared with its wide-field counterpart as the number of molecules is decreased within the smaller focal area. Using the inherent feature of the orientation dipole, the SDOM technique, with its fast imaging speed (at sub-second scale), can be applied to a broad range of fluorescently labeled biological systems to simultaneously resolve the valuable dipole orientation information with super-resolution imaging.
RESUMO
(±)-Modafinil (MOD) is used clinically for the treatment of sleep disorders and has been investigated as a potential medication for the treatment of psychostimulant addiction. However, the therapeutic efficacy of (±)-MOD for addiction is inconclusive. Herein we used animal models of self-administration and in vivo microdialysis to study the pharmacological actions of R-modafinil (R-MOD) and S-modafinil (S-MOD) on nicotine-taking and nicotine-seeking behavior, and mechanisms underlying such actions. We found that R-MOD is more potent and effective than S-MOD in attenuating nicotine self-administration in Long-Evans rats. As Long-Evans rats did not show a robust reinstatement response to nicotine, we used alcohol-preferring rats (P-rats) that display much higher reinstatement responses to nicotine than Long-Evans rats. We found that R-MOD significantly inhibited intravenous nicotine self-administration, nicotine-induced reinstatement, and nicotine-associated cue-induced drug-seeking behavior in P-rats. R-MOD alone neither sustained self-administration in P-rats previously self-administering nicotine nor reinstated extinguished nicotine-seeking behavior. The in vivo brain microdialysis assays demonstrated that R-MOD alone produced a slow-onset moderate increase in extracellular DA. Pretreatment with R-MOD dose-dependently blocked nicotine-induced dopamine (DA) release in the nucleus accumbens (NAc) in both naive and nicotine self-administrating rats, suggesting a DA-dependent mechanism underlying mitigation of nicotine's effects. In conclusion, the present findings support further investigation of R-MOD for treatment of nicotine dependence in humans.
Assuntos
Álcoois/administração & dosagem , Compostos Benzidrílicos/uso terapêutico , Comportamento de Procura de Droga/efeitos dos fármacos , Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , Tabagismo/tratamento farmacológico , Promotores da Vigília/uso terapêutico , Administração Oral , Animais , Condicionamento Operante/efeitos dos fármacos , Relação Dose-Resposta a Droga , Extinção Psicológica/efeitos dos fármacos , Preferências Alimentares/efeitos dos fármacos , Masculino , Modafinila , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Long-Evans , Esquema de Reforço , AutoadministraçãoRESUMO
OBJECTIVES: Geranylgeranylacetone, an acyclic isoprenoid, is a non-toxic inducer of heat shock protein (HSP)70. HSP70 overproduction is associated with heat tolerance in rats. This study aimed to investigate whether geranylgeranylacetone preconditioning of rats reduced heat-induced inflammation and multiple organ dysfunction. METHODS: Anaesthetised rats were given vehicle or geranylgeranylacetone (800 mg/kg) orally. After 48 h they were exposed to ambient temperature of 43 degrees C for 70 min to induce heatstroke. Another group of rats kept at room temperature were used as normothermic controls. KEY FINDINGS: Vehicle-treated rats all succumbed to heat stress; their survival time was 25 +/- 4 min. Pretreatment with geranylgeranylacetone significantly increased survival time to 92 +/- 15 min. Compared with normothermic controls, all vehicle-treated heatstroke rats displayed hepatic and renal dysfunction (e.g. increased plasma levels of serum urea nitrogen, creatinine, aspartate aminotransferase, alanine aminotransferase and alkaline phosphatase) and active inflammation (e.g. increased plasma and brain levels of interleukin-1 beta, tumour necrosis factor-alpha and interleukin-6). These heat-stress response indicators were all significantly suppressed by geranylgeranylacetone pretreatment. In addition, the plasma and brain levels of interleukin-10 (an anti-inflammatory cytokine) and brain levels of HSP70 were significantly increased after geranylgeranylacetone preconditioning during heatstroke. CONCLUSIONS: Geranylgeranylacetone preconditioning attenuates heat-induced inflammation and multiorgan dysfunction in rats.