Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
JCI Insight ; 6(22)2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34618691

RESUMO

BACKGROUNDInfluenza A virus (IAV) and SARS-CoV-2 are pandemic viruses causing millions of deaths, yet their clinical manifestations are distinctly different.METHODSWith the hypothesis that upper airway immune and epithelial cell responses are also distinct, we performed single-cell RNA sequencing (scRNA-Seq) on nasal wash cells freshly collected from adults with either acute COVID-19 or influenza or from healthy controls. We focused on major cell types and subtypes in a subset of donor samples.ResultsNasal wash cells were enriched for macrophages and neutrophils for both individuals with influenza and those with COVID-19 compared with healthy controls. Hillock-like epithelial cells, M2-like macrophages, and age-dependent B cells were enriched in COVID-19 samples. A global decrease in IFN-associated transcripts in neutrophils, macrophages, and epithelial cells was apparent in COVID-19 samples compared with influenza samples. The innate immune response to SARS-CoV-2 appears to be maintained in macrophages, despite evidence for limited epithelial cell immune sensing. Cell-to-cell interaction analyses revealed a decrease in epithelial cell interactions in COVID-19 and highlighted differences in macrophage-macrophage interactions for COVID-19 and influenza.ConclusionsOur study demonstrates that scRNA-Seq can define host and viral transcriptional activity at the site of infection and reveal distinct local epithelial and immune cell responses for COVID-19 and influenza that may contribute to their divergent disease courses.FundingMassachusetts Consortium on Pathogen Readiness, the Mathers Foundation, and the Department of Defense (W81XWH2110029) "COVID-19 Expansion for AIRe Program."


Assuntos
COVID-19 , Imunidade Inata , Vírus da Influenza A , Influenza Humana , Macrófagos , RNA-Seq , SARS-CoV-2 , Adulto , COVID-19/genética , COVID-19/imunologia , Feminino , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/imunologia , Influenza Humana/genética , Influenza Humana/imunologia , Macrófagos/imunologia , Macrófagos/virologia , Masculino , Lavagem Nasal , SARS-CoV-2/genética , SARS-CoV-2/imunologia
2.
Arthritis Rheumatol ; 72(2): 359-370, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31464028

RESUMO

OBJECTIVE: Patients with hypomorphic mutations in DNase II develop a severe and debilitating autoinflammatory disease. This study was undertaken to compare the disease parameters in these patients to those in a murine model of DNase II deficiency, and to evaluate the role of specific nucleic acid sensors and identify the cell types responsible for driving the autoinflammatory response. METHODS: To avoid embryonic death, Dnase2-/- mice were intercrossed with mice that lacked the type I interferon (IFN) receptor (Ifnar-/- ). The hematologic changes and immune status of these mice were evaluated using complete blood cell counts, flow cytometry, serum cytokine enzyme-linked immunosorbent assays, and liver histology. Effector cell activity was determined by transferring T cells from Dnase2-/- × Ifnar-/- double-knockout (DKO) mice into Rag1-/- mice, and 4 weeks after cell transfer, induced changes were assessed in the recipient mice. RESULTS: In Dnase2-/- × Ifnar-/- DKO mice, many of the disease features found in DNase II-deficient patients were recapitulated, including cytopenia, extramedullary hematopoiesis, and liver fibrosis. Dnase2+/+ × Rag1-/- mice (n > 22) developed a hematologic disorder that was attributed to the transfer of an unusual IFNγ-producing T cell subset from the spleens of donor Dnase2-/- × Ifnar-/- DKO mice. Autoinflammation in this murine model did not depend on the stimulator of IFN genes (STING) pathway but was highly dependent on the chaperone protein Unc93B1. CONCLUSION: Dnase2-/- × Ifnar-/- DKO mice may be a valid model for exploring the innate and adaptive immune mechanisms responsible for the autoinflammation similar to that seen in DNASE2-hypomorphic patients. In this murine model, IFNγ is required for T cell activation and the development of clinical manifestations. The role of IFNγ in DNASE2-deficient patient populations remains to be determined, but the ability of Dnase2-/- mouse T cells to transfer disease to Rag1-/- mice suggests that T cells may be a relevant therapeutic target in patients with IFN-related systemic autoinflammatory diseases.


Assuntos
Doenças Autoimunes/etiologia , Endodesoxirribonucleases/deficiência , Inflamação/imunologia , Interferon gama/biossíntese , Células Th1/metabolismo , Animais , Modelos Animais de Doenças , Interferon Tipo I , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA