Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioorg Chem ; 138: 106623, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37295240

RESUMO

Fangchinoline (Fan) are extracted from the traditional Chinese medicine Stephania tetrandra S., which is a bis-benzyl isoquinoline alkaloids with anti-tumor activity. Therefore, 25 novel Fan derivatives have been synthesized and evaluated for their anti-cancer activity. In CCK-8 assay, these fangchinoline derivatives displayed higher proliferation inhibitory activity on six tumor cell lines than the parental compound. Compared to the parent Fan, compound 2h presented the anticancer activity against most cancer cells, especially A549 cells, with an IC50 value of 0.26 µM, which was 36.38-fold, and 10.61-fold more active than Fan and HCPT, respectively. Encouragingly, compound 2h showed low biotoxicity to the human normal epithelial cell BEAS-2b with an IC50 value of 27.05 µM. The results indicated compound 2h remarkably inhibited the cell migration by decreasing MMP-2 and MMP-9 expression and inhibited the proliferation of A549 cells by arresting the G2/M cell cycle. Meanwhile, compound 2h could also induce A549 cell apoptosis by promoting endogenous pathways of mitochondrial regulation. In nude mice presented that the growth of tumor tissues was markedly inhibited by the consumption of compound 2h in a dose-dependent manner, and it was found that compound 2h could inhibit the mTOR/PI3K/AKT pathway in vivo. In docking analysis, high affinity interaction between 2h and PI3K was responsible for drastic kinase inhibition by the compound. To conclude, this derivative compound may be useful as a potent anti-cancer agent for treatment of NSCLC.


Assuntos
Antineoplásicos , Benzilisoquinolinas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Camundongos , Animais , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos Nus , Neoplasias Pulmonares/metabolismo , Proliferação de Células , Benzilisoquinolinas/farmacologia , Benzilisoquinolinas/uso terapêutico , Linhagem Celular Tumoral , Apoptose , Proteínas Proto-Oncogênicas c-akt/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
2.
Bioorg Chem ; 109: 104694, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33601141

RESUMO

Cancer treatment is one of the major public health issues in the world. Tetrandrine (Tet) and fangchinoline (d-Tet) are two bis-benzyl isoquinoline alkaloids extracted from Stephania tetrandra S. Moore, and their antitumor activities have been confirmed. However, the effective dose of Tet and d-Tet were much higher than that of the positive control and failed to meet clinical standards. Therefore, in this study, as a continuation of our previous work to study and develop high-efficiency and low-toxic anti-tumor lead compounds, twenty new Tet and d-Tet derivatives were designed, synthesized and evaluated as antitumor agents against six cancer cell lines (H460, H520, HeLa, HepG-2, MCF-7, SW480 cell lines) and BEAS-2B normal cells by CCK-8 analysis. Ten derivatives showed better cytotoxic effects than the parent fangchinoline, of which 4g showed the strongest cell growth inhibitory activity with an IC50 value of 0.59 µM against A549 cells. Subsequently, the antitumor mechanism of 4g was studied by flow cytometry, Hoechst 33258, JC-1 staining, cell scratch, transwell migration, and Western blotting assays. These results showed that compound 4g could inhibit A549 cell proliferation by arresting the G2/M cell cycle and inhibiting cell migration and invasion by reducing MMP-2 and MMP-9 expression. Meanwhile, 4g could induce apoptosis of A549 cells through the intrinsic pathway regulated by mitochondria. In addition, compound 4g inhibited the phosphorylation of PI3K, Akt and mTOR, suggesting a correlation between blocking the PI3K/Akt/mTOR pathway and the above antitumor activities. These results suggest that compound 4g may be a future drug for the development of new potential drug candidates against lung cancer.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Benzilisoquinolinas/química , Desenho de Fármacos , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Humanos , Estrutura Molecular
3.
Bioorg Chem ; 94: 103431, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31759658

RESUMO

The isolation and modification of natural products play an important role in the synthesis of anti-tumor drugs for the treatment of cancer. The present study was designed to evaluate the effects of fangchinoline derivatives against cancer cells. In vitro cytotoxicity of all derivatives against five cancer cell lines (A549, Hela, HepG-2, MCF-7 and MDA-MB-231 cell lines) and HL-7702 normal cells was assessed using the CCK-8 assay, and the results showed that most of the synthesized compounds displayed better cytotoxic effects on all the tested cells compared to that of the parent fangchinoline. In particular, compound 3i had the strongest inhibitory effect on cell proliferation, with an IC50 value of 0.61 µM against A549 cells. Compared with fangchinoline and HCPT (hydroxycamptothecine), the anti-proliferative activity of compound 3i was significantly increased. More interestingly, compound 3i had slight toxic side effects on normal cells, with an IC50 value of 27.53 µM. Moreover, the cell viability and cell cycle assays revealed that compound 3i inhibited A549 cell proliferation and arrested A549 cells at the G2/M-phase. The apoptosis-inducing effects of compound 3i and the associated molecular mechanisms were assessed using flow cytometry, cell staining, reactive oxygen species assays, RT-qPCR and Western blot analysis. These results suggested that compound 3i induces apoptosis through a mitochondria-mediated intrinsic pathway. This study revealed that compound 3i is a promising candidate for future development as an anti-tumor drug.


Assuntos
Antineoplásicos/farmacologia , Benzilisoquinolinas/farmacologia , Desenho de Fármacos , Células A549 , Antineoplásicos/síntese química , Antineoplásicos/química , Benzilisoquinolinas/síntese química , Benzilisoquinolinas/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA