Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nanotechnology ; 27(31): 315101, 2016 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-27334550

RESUMO

A structurally controllable fluorescence-labeled hollow mesoporous carbon (HMC) was simply prepared to improve the oral bioavailability of insoluble drugs and further trace their delivery process in vivo. The hollow structure was derived from an inverse replica process using mesoporous silica as a template and the fluorescent label was prepared by doping the carboxylated HMC with a confinement of Eu(3+)/Gd(3+)-EDTA. The physicochemical properties of the composites were systematically characterized by transmission electron microscopy, Fourier transform infrared spectroscopy and photoluminescence spectra tests prior to studying their effects on drug-release behavior and biodistribution. As a result, the thickness of the carrier's shell was adjusted from 70 nm to 130 nm and the maximum drug loading was up to 73.6%. The model drug carvedilol (CAR) showed sustained release behavior compared to CAR commercial capsules, and the dissolution rate slowed down as the shells got thicker. AUC0-48h and Tmax were enlarged 2.2 and 6.5 fold, respectively, which demonstrated that oral bioavailability was successfully improved. Bioimaging tests showed that the novel carbon vehicle had a long residence time in the gastrointestinal tract. In short, the newly designed HMC is a promising drug carrier for both oral bioavailability improvement and in vivo tracing.


Assuntos
Carbono/química , Disponibilidade Biológica , Portadores de Fármacos , Ácido Edético , Európio , Gadolínio , Porosidade , Dióxido de Silício , Solubilidade , Distribuição Tecidual
2.
Drug Dev Ind Pharm ; 42(3): 464-72, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26507935

RESUMO

OBJECTIVE: To explore the effect of the pore size of three-dimensionally ordered macroporous chitosan-silica (3D-CS) matrix on the solubility, drug release, and oral bioavailability of the loaded drug. METHODS: 3D-CS matrices with pore sizes of 180 nm, 470 nm, and 930 nm were prepared. Nimodipine (NMDP) was used as the drug model. The morphology, specific surface area, and chitosan mass ratio of the 3D-CS matrices were characterized before the effect of the pore size on drug crystallinity, solubility, release, and in vivo pharmacokinetics were investigated. RESULTS: With the pore size of 3D-CS matrix decreasing, the drug crystallinity decreased and the aqueous solubility increased. The drug release was synthetically controlled by the pore size and chitosan content of 3D-CS matrix in a pH 6.8 medium, while in a pH 1.2 medium the erosion of the 3D-CS matrix played an important role in the decreased drug release rate. The area under the curve of the drug-loaded 3D-CS matrices with pore sizes of 930 nm, 470 nm, and 180 nm was 7.46-fold, 5.85-fold, and 3.75-fold larger than that of raw NMDP respectively. CONCLUSION: Our findings suggest that the oral bioavailability decreased with a decrease in the pore size of the matrix.


Assuntos
Quitosana/farmacocinética , Liberação Controlada de Fármacos/fisiologia , Nimodipina/farmacocinética , Dióxido de Silício/farmacocinética , Administração Oral , Animais , Disponibilidade Biológica , Quitosana/administração & dosagem , Quitosana/química , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Liberação Controlada de Fármacos/efeitos dos fármacos , Conformação Molecular , Nimodipina/administração & dosagem , Nimodipina/química , Porosidade , Ratos , Ratos Sprague-Dawley , Dióxido de Silício/administração & dosagem , Dióxido de Silício/química
3.
Nanotechnology ; 26(16): 165704, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25827241

RESUMO

Cyclodextrin (CD)-capped mesoporous silica nanoparticles (MSN) with pH-responsive properties were synthesized, but little research has been carried out to evaluate the impact of critical factors such as the stalk density and the type of CD on the pH-responsive release behavior. Here, the effect of different stalk densities on the pH-responsive release behavior was investigated. Either too low or too high density of the grafted p-anisidine stalk could result in poor cargo release, and the optimum stalk density for MSN was measured by thermal analysis, and found to be approximately 8.7 stalks nm(-2). To achieve effective release control, the CD capes, α-CD and ß-CD, were also investigated. Isothermal titration calorimetry (ITC) analysis was employed to determine the formation constants (Kf) of the two CD with p-anisidine at different pH values. The results obtained showed that the complex of ß-CD with p-anisidine had excellent pH-responsive behavior as it exhibited the largest changed formation constant (ΔKf) in different pH media. Furthermore, the pH-responsive mechanism between CD and p-anisidine molecules was investigated through ITC and a molecular modeling study. The release of antitumor drug DOX presents a significant prospect toward the development of pH-responsive nanoparticles as a drug delivery vehicle.


Assuntos
Ciclodextrinas/química , Portadores de Fármacos/química , Nanopartículas/química , Dióxido de Silício/química , Concentração de Íons de Hidrogênio , Modelos Moleculares
4.
Biomacromolecules ; 15(3): 1010-8, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24547943

RESUMO

In this work, a peptide derived from the rabies virus glycoprotein (RVG) was linked to siRNA/trimethylated chitosan (TMC) complexes through bifunctional PEG for efficient brain-targeted delivery of siRNA. The physiochemical properties of the complexes, such as siRNA complexing ability, size and ζ potential, morphology, serum stability, and cytotoxicity, were investigated prior to studying the cellular uptake, in vitro gene silencing efficiency, and in vivo biodistribution. The RVG-peptide-linked siRNA/TMC-PEG complexes showed increased serum stability, negligible cytotoxicity, and higher cellular uptake than the unmodified siRNA/TMC-mPEG complexes in acetylcholine receptor positive Neuro2a cells. The potent knockdown of BACE1, a therapeutic target in Alzheimer's disease, demonstrated the gene silencing efficiency. In vivo imaging analysis showed significant accumulation of Cy5-siRNA in the isolated brain of mice injected with RVG-peptide-linked complexes. Therefore, the RVG-peptide-linked TMC-PEG developed in this study can be used as a potential carrier for delivery of siRNA to the brain.


Assuntos
Secretases da Proteína Precursora do Amiloide/genética , Ácido Aspártico Endopeptidases/genética , Técnicas de Transferência de Genes , Terapia Genética , Glicoproteínas/genética , Fragmentos de Peptídeos/genética , RNA Interferente Pequeno/genética , Proteínas Virais/genética , Animais , Encéfalo/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Quitosana/administração & dosagem , Quitosana/química , Glicoproteínas/administração & dosagem , Glicoproteínas/química , Humanos , Camundongos , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/química , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/química , Vírus da Raiva/genética , Distribuição Tecidual , Proteínas Virais/administração & dosagem , Proteínas Virais/química
5.
Drug Dev Ind Pharm ; 40(2): 252-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23391363

RESUMO

BACKGROUND: Organic porous material is a promising carrier for enhancing the dissolution of poorly water soluble drug. The aim of the present study was to enhance dissolution and oral bioavailability of lovastatin (LV) by preparing a porous starch microsphere foam (PSM) using a novel method, meanwhile, looking into the mechanism of improving dissolution of LV. METHODS: PSM was prepared by the W/O emulsion-freeze thawing method. The porous structure of PSM was characterized by scanning electron microscopy (SEM) and nitrogen adsorption/desorption analysis. The adsorption role of nanopores on the drug dissolution and physical state of LV was systematically studied by instrumental analysis, and in vitro and in vivo drug dissolution studies. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to evaluate carrier cytotoxicity. RESULTS: The SEM images of PSM showed nanometer-sized pores. Physical state characterization indicated that porous structure effectively limited the degree of crystallinity of LV. The results of in vitro and in vivo tests testified that PSM accelerated the release of LV and enhanced its oral bioavailability in comparison with crude LV and commercial capsules. The loaded PSM powder indicated a good physical stability under storage for 12 months. MTT assay shows PSM has no toxicity for Caco-2 cell. CONCLUSION: The preparation was a promising method to produce small and uniform PSM with markedly enhanced dissolution rate and oral bioavailability due to the spatial confinement effect of porous structure. The present work demonstrates the significant potential for the use of PSM as a novel delivery system for poorly water soluble drugs.


Assuntos
Microesferas , Preparações Farmacêuticas/química , Amido/química , Água/química , Animais , Células CACO-2 , Cães , Feminino , Humanos , Masculino , Preparações Farmacêuticas/metabolismo , Porosidade , Solubilidade , Amido/metabolismo , Água/metabolismo , Difração de Raios X
6.
Exp Neurol ; 378: 114845, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38838802

RESUMO

BACKGROUND: Research in the areas of inflammation and mitochondrial stress in ischemic stroke is rapidly expanding, but a comprehensive overview that integrates bibliometric trends with an in-depth review of molecular mechanisms is lacking. OBJECTIVE: To map the evolving landscape of research using bibliometric analysis and to detail the molecular mechanisms that underpin these trends, emphasizing their implications in ischemic stroke. METHODS: We conducted a bibliometric analysis to identify key trends, top contributors, and focal research themes. In addition, we review recent research advances in mitochondrial stress and inflammation in ischemic stroke to gain a detailed understanding of the pathophysiological processes involved. CONCLUSION: Our integrative approach not only highlights the growing research interest and collaborations but also provides a detailed exploration of the molecular mechanisms that are central to the pathology of ischemic stroke. This synthesis offers valuable insights for researchers and paves the way for targeted therapeutic interventions.


Assuntos
Bibliometria , Inflamação , AVC Isquêmico , Mitocôndrias , Humanos , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Mitocôndrias/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Animais
7.
Int Immunopharmacol ; 134: 112267, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38761781

RESUMO

OBJECTIVE: This study conducts a systematic investigation into the causal relationships between plasma uric acid levels and subtypes of ischemic stroke (IS), as well as the extent to which Type 2 diabetes mellitus (T2DM) mediates this relationship. BACKGROUND: There is a known association between Uric acid and IS but whether they have a causal relationship remains unclear. This study aims to determine whether a genetic predisposition to uric acid is causally linked to IS, including three subtypes, and to determine the mediating role of T2DM. METHODS: Bidirectional Mendelian randomization (MR) analyses was initially used to explore the causal relationship between uric acid and three subtypes of IS. Two-step MR methods were then used to investigate the role of T2DM in mediating the effect of uric acid and IS with its subtypes. RESULTS: A primary analysis showed uric acid had a markedly causal association with IS (IVW, OR 1.23; 95 % CI, 1.13 - 1.34; p = 6.39 × 10-9), and two subtypes of IS, Large-vessel atherosclerotic stroke LAS (IVW, OR 1.25; 95 % CI, 1.03 - 1.53; p = 0.026) and small vessel stroke (SVS) (IVW, OR 1.20; 95 % CI, 1.00 - 1.43; p = 0.049), but not with cardioembolic stroke (CES)(IVW, OR 1.00; 95 % CI, 0.87 - 1.15; p = 0.993). Two-step MR results showed that T2DM mediated the association between uric acid and LAS and SVS, accounting for 13.85 % (p = 0.025) and 13.57 % (p = 0.028), respectively. CONCLUSIONS: The study suggests that genetic predisposition to uric acid is linked to a greater risk of IS, especially LAS and SVS. T2DM might mediate a significant proportion of the associations between uric acid and LAS as well as SVS.


Assuntos
Diabetes Mellitus Tipo 2 , Predisposição Genética para Doença , AVC Isquêmico , Análise da Randomização Mendeliana , Ácido Úrico , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/genética , Ácido Úrico/sangue , Humanos , AVC Isquêmico/sangue , AVC Isquêmico/genética , Polimorfismo de Nucleotídeo Único
8.
Int J Biol Macromol ; 255: 127988, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37956809

RESUMO

In this study, we constructed a novel powder-laden core-shell crosslinked chitosan microneedle patch for high-dose and controllable delivery of various drugs, including both macromolecular biological drugs and small-molecule chemical drugs. Direct loading of drug powders greatly improved drug loading capacity and minimized degradation. The results of the in vitro drug release study suggested that the release behaviors of the most tested drugs (both macromolecular drugs and small-molecule drugs) can be tuned by adjusting the crosslink density of the microneedle shell to achieve either rapid or sustained release of the loaded drug. The in vivo hypoglycemic efficacy test in streptozotocin-induced diabetic mice further proved that the onset and duration of the insulin-laden patch can be customized by adjusting the crosslink density. Furthermore, a combination of microneedle patches with different crosslink densities not only rapidly reduced blood glucose levels to normoglycemic levels (within 1 h) but also maintained normoglycemia for up to 36 h. The insulin loaded in the patch also showed good stability during storage at 40 °C for 6 months. Our results suggest that this powder-laden patch represents a strong candidate for addressing the multiple challenges in the preparation and application of polymeric microneedles and shows promise in clinical applications.


Assuntos
Quitosana , Diabetes Mellitus Experimental , Camundongos , Animais , Quitosana/química , Pós , Diabetes Mellitus Experimental/tratamento farmacológico , Agulhas , Sistemas de Liberação de Medicamentos/métodos , Insulina/farmacologia , Substâncias Macromoleculares/uso terapêutico , Administração Cutânea
9.
J Control Release ; 368: 430-443, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447813

RESUMO

Limited drug loading and incomplete drug release are two major obstacles that traditional polymeric microneedles (MNs) have to overcome. For smart controlled-release MNs, since drug release duration is uncertain, a clear indication of the finish of drug release is also important for patient guidance on the timing of the next dose. In this study, MN with a triple structure of a glucose-responsive shell, loaded insulin powders and a colored propelling inner core (inspired by the mechanism of osmotic pump) was innovatively constructed. The MN patch could release insulin according to blood glucose levels (BGLs) and had excellent drug loading, more complete drug release, and good drug stability, which significantly prolonged the normoglycemic time. An approximately 0.3 cm2 patch has a hypoglycemic effect on diabetic mice for up to 24 h. Moreover, the fading of the inner core could indicate the release process of the loaded drug and can help to facilitate uninterrupted closed loop therapy for patients. The designed triple MN structure is also suitable, and can be used in the design of other smart MN drug delivery systems to further improve their drug loading capacity and simultaneously achieve more complete, smart controlled and visualized drug release.


Assuntos
Diabetes Mellitus Experimental , Humanos , Camundongos , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Agulhas , Sistemas de Liberação de Medicamentos , Insulina , Glucose , Administração Cutânea
10.
Colloids Surf B Biointerfaces ; 238: 113920, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38688058

RESUMO

Mucosal immunization is a powerful weapon against viral infection. In this paper, large pore mesoporous silica nanoparticles (LMSN) with different particle sizes were synthesized for loading influenza split vaccine (SV) to explore the effect of nanoparticle sizes on mucosal immunization and adjuvant efficacy. Interestingly, it was found that among the three particle sizes of nanoparticles, only LMSN-M with around 250 nm could significantly enhance the mucosal immune effect of SV, possessing adjuvant effect. The results indicated that particle size affected the adjuvant effect of LMSN. There was no apparent difference in vaccine loading capacity of LMSN with different particle sizes, but the release of SV depended on the pore length of LMSN. The adjuvant effect of LMSN-M was attributed to its higher cellular uptake performance, intestine absorption and transport efficiency, and the ability to stimulate the maturation of dendritic cells. Simultaneously, compared with LMSN-S and LMSN-L, the more retention of LMSN-M in mesenteric lymph nodes increased the chance of interaction between vaccine and immune system, resulting in the enhanced immunity. This is the first time to study the impact of particle size of LMSN adjuvant on improving mucosal immunity of oral influenza vaccine, and the present work provides a scientific reference for adjuvant design of oral vaccine.


Assuntos
Vacinas contra Influenza , Nanopartículas , Tamanho da Partícula , Dióxido de Silício , Dióxido de Silício/química , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/química , Vacinas contra Influenza/administração & dosagem , Nanopartículas/química , Animais , Administração Oral , Porosidade , Camundongos , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/administração & dosagem , Camundongos Endogâmicos BALB C , Feminino , Imunidade nas Mucosas/efeitos dos fármacos , Propriedades de Superfície
11.
Bioact Mater ; 38: 472-485, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38779591

RESUMO

Reactive oxygen species (ROS) generated from photosensitizers exhibit great potential for repolarizing immunosuppressive tumor-associated macrophages (TAMs) toward the anti-tumor M1 phenotype, representing a promising cancer immunotherapy strategy. Nevertheless, their effectiveness in eliminating solid tumors is generally limited by the instability and inadequate TAMs-specific targeting of photosensitizers. Here, a novel core-shell integrated nano platform is proposed to achieve a coordinated strategy of repolarizing TAMs for potentiating cancer immunotherapy. Colloidal mesoporous silica nanoparticles (CMSN) are fabricated to encapsulate photosensitizer-Indocyanine Green (ICG) to improve their stability. Then ginseng-derived exosome (GsE) was coated on the surface of ICG/CMSN for targeting TAMs, as well as repolarizing TAMs concurrently, named ICG/CMSN@GsE. As expected, with the synergism of ICG and GsE, ICG/CMSN@GsE exhibited better stability, mild generation of ROS, favorable specificity toward M2-like macrophages, enhancing drug retention in tumors and superior TAMs repolarization potency, then exerted a potent antitumor effect. In vivo, experiment results also confirm the synergistic suppression of tumor growth accompanied by the increased presence of anti-tumor M1-like macrophages and maximal tumor damage. Taken together, by integrating the superiorities of TAMs targeting specificity and synergistic TAMs repolarization effect into a single nanoplatform, ICG/CMSN@GsE can readily serve as a safe and high-performance nanoplatform for enhanced cancer immunotherapy.

12.
Mol Pharm ; 10(8): 3195-202, 2013 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-23822717

RESUMO

Decitabine (5-aza-2'-deoxycytidine, DAC) is a novel DNA methyltransferase (DNMT) inhibitor for the treatment of myelodysplastic syndrome, acute and chronic myeloid leukemia. However, it exhibits a low oral bioavailability (only 9% in mice), because of low permeability across the intestine membrane and rapid metabolism to inactive metabolite. To utilize the carrier-mediated prodrug approach for improved absorption of decitabine, a series of amino acid-decitabine conjugates were synthesized to target the intestinal membrane transporter, hPepT1. The Caco-2 permeability of the prodrugs was screened, and two l-val (aliphatic, compound 4a) and l-phe (aromatic, compound 4c) prodrugs with higher permeability were selected for further studies. The uptake of Gly-Sar by Caco-2 cells could be competitively inhibited by compounds 4a and 4c, with IC50 being 2.20 ± 0.28 mM and 3.46 ± 0.16 mM, respectively. The uptake of compounds 4a and 4c was markedly increased in the leptin-treated Caco-2 cells compared with the control Caco-2 cells, suggesting that hPepT1-mediated transport contributes to oral absorption of compounds 4a and 4c. The prodrugs were evaluated for their stability in various phosphate buffers, rat plasma, tissue homogenates, and gastrointestinal fluids. Compounds 4a and 4c were stable in gastrointestinal tract at pH 6.0 but could be quickly converted into DAC in plasma and tissue homogenates after absorption. The oral absolute bioavailability of DAC was 46.7%, 50.9%, and 26.9% after compounds 4a, 4c, and DAC were orally administered to rats at a dose of 15 mg/kg, respectively. The bioavailability of compounds 4a and 4c in rats was both reduced to about 32% when orally coadministrated with typical hPepT1 substrate Gly-Sar (150 mg/kg). Overall, compounds 4a and 4c can significantly enhance the intestinal membrane permeability of DAC, followed by rapid and mostly bioactivation to parent drug in intestinal and hepatic tissues before entry into systemic circulation, and eventually improve oral bioavailability of DAC in rats. The hPepT1-targeted prodrug strategy is a promising strategy to improve the oral bioavailability of poorly absorbed decitabine.


Assuntos
Antimetabólitos Antineoplásicos/farmacocinética , Azacitidina/análogos & derivados , Pró-Fármacos/farmacocinética , Animais , Azacitidina/farmacocinética , Células CACO-2 , Cromatografia Líquida de Alta Pressão , Decitabina , Humanos , Masculino , Modelos Biológicos , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
13.
Front Neurosci ; 17: 1206793, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37483355

RESUMO

Background: Matrix metalloproteinases (MMPs) are important players in the complex pathophysiology of ischemic stroke (IS). Recent studies have shown that tremendous progress has been made in the research of MMPs in IS. However, a comprehensive bibliometric analysis is lacking in this research field. This study aimed to introduce the research status as well as hotspots and explore the field of MMPs in IS from a bibliometric perspective. Methods: This study collected 1,441 records related to MMPs in IS from 1979 to 2022 in the web of science core collection (WoSCC) database, among them the first paper was published in 1992. CiteSpace, VOSviewer, and R package "bibliometrix" software were used to analyze the publication type, author, institution, country, keywords, and other relevant data in detail, and made descriptive statistics to provide new ideas for future clinical and scientific research. Results: The change in the number of publications related to MMPs in IS can be divided into three stages: the first stage was from 1992 to 2012, when the number of publications increased steadily; the second stage was from 2013 to 2017, when the number of publications was relatively stable; the third stage was from 2018 to 2022, when the number of publications began to decline. The United States and China, contributing more than 64% of publications, were the main drivers for research in this field. Universities in the United States were the most active institutions and contributed the most publications. STROKE is the most popular journal in this field with the largest publications as well as the most co-cited journal. Rosenberg GA was the most prolific writer and has the most citations. "Clinical," "Medical," "Neurology," "Immunology" and "Biochemistry molecular biology" were the main research areas of MMPs in IS. "Molecular regulation," "Metalloproteinase-9 concentration," "Clinical translation" and "Cerebral ischemia-reperfusion" are the primary keywords clusters in this field. Conclusion: This is the first bibliometric study that comprehensively mapped out the knowledge structure and development trends in the research field of MMPs in IS in recent 30 years, which will provide a reference for scholars studying this field.

14.
Mol Neurobiol ; 60(9): 5117-5136, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37258724

RESUMO

The most frequent type of stroke, known as ischemic stroke (IS), is a significant global public health issue. The pathological process of IS and post-IS episodes has not yet been fully explored, but neuroinflammation has been identified as one of the key processes. Biomarkers are objective indicators used to assess normal or pathological processes, evaluate responses to treatment, and predict outcomes, and some biomarkers can also be used as therapeutic targets. After IS, various molecules are produced by different cell types, such as microglia, astrocytes, infiltrating leukocytes, endothelial cells, and damaged neurons, that participate in the neuroinflammatory response within the ischemic brain region. These molecules may either promote or inhibit neuroinflammation and may be released into extracellular spaces, including cerebrospinal fluid (CSF) and blood, due to reasons such as BBB damage. These neuroinflammatory molecules should be valued as biomarkers to monitor whether their expression levels in the blood, CSF, and brain correlate with the diagnosis and prognosis of IS patients or whether they have potential as therapeutic targets. In addition, although some molecules do not directly participate in the process of neuroinflammation, they have been reported to have potential diagnostic or therapeutic value against post-IS neuroinflammation, and these molecules will also be listed. In this review, we summarize the neuroinflammatory biomarkers in the brain, CSF, and blood after an IS episode and the potential value of these biomarkers for the diagnosis, treatment, and prognosis of IS patients.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , AVC Isquêmico/metabolismo , Doenças Neuroinflamatórias , Células Endoteliais/metabolismo , Encéfalo/metabolismo , Acidente Vascular Cerebral/patologia , Biomarcadores/metabolismo
15.
Biomaterials ; 303: 122391, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37995457

RESUMO

Reactive oxygen species (ROS) play a crucial role in regulating the metabolism of tumor growth, metastasis, death and other biological processes. ROS-based nanodynamic therapies (NDTs) are becoming attractive due to non-invasive, low side effects and tumor-specific advantages. NDTs have rapidly developed into numerous branches, such as photodynamic therapy, chemodynamic therapy, sonodynamic therapy and so on. However, the complexity of the tumor microenvironment and the limitations of existing sensitizers have greatly restricted the therapeutic effects of NDTs, which heavily rely on ROS levels. To address the limitations of NDTs, various strategies have been developed to increase ROS yield, which is an urgent aspect for the positive development of NDTs. In this review, the nanodynamic potentiation strategies in terms of unique properties and universalities of NDTs are comprehensively outlined. We mainly summarize the current dilemmas faced by each NDT and the respective solutions. Meanwhile, the NDTs universalities-based potentiation strategies and NDTs-based combined treatments are elaborated. Finally, we conclude with a discussion of the key issues and challenges faced in the development and clinical transformation of NDTs.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Espécies Reativas de Oxigênio/metabolismo , Medicina de Precisão , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fotoquimioterapia/métodos , Terapia Combinada , Microambiente Tumoral , Linhagem Celular Tumoral
16.
J Colloid Interface Sci ; 639: 249-262, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36805750

RESUMO

Glutathione (GSH) is a crucial factor in limiting the effects of chemodynamic therapy (CDT) and ferroptosis, an iron-based cell death pathway. Based on this, we constructed iron-rich mesoporous dopamine (MPDA@Fe) nanovehicles with a dual-GSH depletion function by combining MPDA and Fe. Poly (ethylene glycol) (PEG) was further modified to provide desirable stability (PM@Fe) and glucose oxidase (GOx) was grafted onto PM@Fe (GPM@Fe) to address the limitation of hydrogen peroxide (H2O2). After the nanoparticles reached the tumor site, the weakly acidic microenvironment promoted the release of Fe. Then FeII reacted with H2O2 to generate hydroxyl radical (OH) and FeIII. The generated FeIII was reduced to FeII by GSH, which circularly participated in the Fenton reaction and continuously produced tumor inhibitory free radicals. Meanwhile, GOx consumed glucose to provide H2O2 for the reaction. MPDA had also been reported to deplete GSH. Therefore, dual consumption of GSH led to the destruction of intracellular redox balance and inhibition of glutathione-dependent peroxidase 4 (GPX4) expression, resulting in an increase in lipid peroxides (LPO) and further induction of ferroptosis. Additionally, MPDA-mediated photothermal therapy (PTT) raised the temperature of tumor area and produced photothermal-enhanced cascade effects. Hence, the synergistic strategy that combined dual-GSH depletion-induced ferroptosis, enhanced CDT and photothermal cascade enhancement based on MPDA@Fe could provide more directions for designing nanomedicines for cancer treatment.


Assuntos
Ferroptose , Neoplasias , Humanos , Dopamina , Compostos Férricos , Peróxido de Hidrogênio , Glucose Oxidase , Glutationa , Ferro , Compostos Ferrosos , Linhagem Celular Tumoral , Microambiente Tumoral
17.
AAPS PharmSciTech ; 13(4): 1367-76, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23054985

RESUMO

To prepare stable polyion complex (PIC) micelles, polyasparthydrazide (PAHy) modified with glycidyltrimethylammonium groups and methoxy poly(ethylene glycol) (mPEG) (mPEG-g-PAHy-GTA) was synthesized. The cytotoxicity of the polymer was evaluated by the methyl tetrazolium assay. The polymer entrapped the diammonium glycyrrhizinate (DG) and formed polyion complexes. The effect of pH value, grafting degree of mPEG, copolymer and drug concentration on the micelle formation was investigated by means of measuring entrapment efficiency and micelle size. In vitro DG release from the PIC micelles was detected by dialysis in various media of different ionic strengths. To examine the pharmacokinetic behavior of micelles in vivo, the time course of the drug in plasma was evaluated. The cytotoxicity of the polymer was very low. The results showed that entrapment efficiency can reach about 93%, and the mean particle size was almost 50 nm. The drug release rate decreased with a decrease in ionic strength of the release medium or an increase in the PEG grafting degree. Compared with DG solution, the AUC of DG micelles had a twofold increase. The smaller clearance and longer mean residence time of the DG micelles group compared with DG solution group showed that the DG loaded in PIC micelles can reduce drug elimination and prolong the drug residence time in the blood circulation. The results indicated that PIC micelles composed of mPEG-g-PAHy-GTA would be prospective as a drug carrier to the drugs which can be ionized in solution.


Assuntos
Compostos de Epóxi/química , Ácido Glicirrízico/química , Micelas , Polietilenoglicóis/química , Polímeros/química , Compostos de Amônio Quaternário/química , Área Sob a Curva , Diálise/métodos , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Compostos de Epóxi/farmacocinética , Ácido Glicirrízico/farmacocinética , Concentração de Íons de Hidrogênio , Concentração Osmolar , Tamanho da Partícula , Polietilenoglicóis/farmacocinética , Polímeros/farmacocinética , Compostos de Amônio Quaternário/farmacocinética
18.
Acta Biomater ; 148: 310-322, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35675892

RESUMO

Photodynamic therapy (PDT) has been thriving in the theranostics of cancer in recent years. However, due to a series of problems such as high concentration of GSH and insufficient O2 partial pressure in the tumor micro-environment, it is difficult to achieve the desired therapeutic effects with single PDT. Mesoporous carbon (MC-COOH) has been widely used in photothermal therapy (PTT) due to its high photothermal conversion efficiency and drug loading. In addition, we have discovered that MC-COOH owned high-efficiency glutathione oxidase-like activity for intracellular lasting GSH consumption. Hence, a smart mesoporous carbon nanozyme (CCM) was designed as a dual-GSH depletion agent and O2 generator combined with PTT to overcome the dilemma of PDT. MnO2-doped carbon nanozyme (MC-Mn) was developed as the photothermal vehicles for the efficient loading of photosensitizer (Ce6). Subsequently, 4T1 membrane-coated nanozyme (Ce6/CCM) was constructed to achieve homologous targeting capability. The carbon nanozyme owned the sustained dual-GSH depletion function through MC-COOH and MnO2, which greatly destroyed the antioxidant system of the tumor. Meanwhile, MnO2 could produce affluent O2 in the presence of H2O2, thereby alleviating the hypoxic state of tumor tissues and further promoting the generation of ROS. In addition, the novel carbon nanozyme was designed as photoacoustic imaging (PAI) agent and magnetic resonance imaging (MRI) contrast for real-time imaging during tumor therapy. In summary, this work showed that the biomimetic carbon nanozyme could be used as dual-GSH depletion agent and O2 generator for dual-mode imaging-guided PTT-PDT. STATEMENT OF SIGNIFICANCE: - MC-COOH with highly efficient GSH-OXD activity was first discovered and applied in PDT. - MnO2 acted as an O2 generator and GSH depletion agent to enhance PDT. - The tumor-targeting ability of the nanozyme was improved by cell membrane camouflage. - CCM nanozyme possesses both PAI and MRI dual-mode imaging modalities to guide PDT/PTT.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Biomimética , Carbono/farmacologia , Linhagem Celular Tumoral , Humanos , Peróxido de Hidrogênio/farmacologia , Compostos de Manganês/farmacologia , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Óxidos/farmacologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Microambiente Tumoral
19.
Biomaterials ; 286: 121567, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35580476

RESUMO

The intracellular delivery of proteins is of great significance. For diseases such as cancer, heart disease and neurodegenerative diseases, many important pharmacological targets are located inside cells. For genetic engineering and cell engineering, various functional proteins need to be delivered into cells for gene editing or cell state regulation. However, most existing protein delivery strategies involve endosomal escape (endocytosis-dependent), resulting in inefficient delivery due to endosome trapping. In contrast, endocytosis-independent intracellular delivery, which refers to the directly delivery of proteins across the cell membrane to the cytoplasm, will bypass the low efficiency of early endosomal escape, avoid protein inactivation caused by late endosome/lysosome, fundamentally improve the intracellular delivery efficiency, and open up a new way for intracellular protein delivery. In this review, the latest advances in direct intracellular delivery of proteins through membrane perforation, membrane translocation, and membrane fusion were summarized. The mechanisms, related materials and potential therapeutic in living cells/in vivo for each approach were discussed in detail, and the future development in this promising field was briefly presented.


Assuntos
Endocitose , Endossomos , Membrana Celular/metabolismo , Endocitose/fisiologia , Endossomos/metabolismo , Proteínas/metabolismo
20.
J Colloid Interface Sci ; 582(Pt A): 364-375, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32861041

RESUMO

Oral delivery of protein or peptide drugs confronts several barriers, the intestinal epithelium and the mucus barrier on the gastrointestinal tract is deemed to be the toughest obstacles. However, overcoming these two obstacles requires contradictory surface properties of a nanocarrier. In the present work, mesoporous silica nanoparticles (MSNs) were modified with deoxycholic acid (DC) and coated with sulfobetaine 12 (SB12) for the first time to achieve both improved mucus permeation and transepithelial absorption. MSNs modified with stearic acid and coated with dilauroylphosphatidylcholine (DLPC) or Pluronic P123 were also prepared as controls. The SB12 coated DC modified MSN had high drug loading of 22.2%. The zwitterion coating endows the MSN improved mucus penetrating ability. In addition, the carrier also showed remarkable affinity with epithelial cells. The cellular uptake was significantly improved (10-fold for Caco-2 cells and 8-fold for E12 cells). The results also indicated that the DC modified carrier was able to avoid entry into lysosomes. It can increase the absorption of loaded insulin in all intestine segments and showed outstanding hypoglycemic effect in diabetic rats. The results suggest the zwitterion-functionalized MSNs might be a good candidate for oral protein delivery.


Assuntos
Diabetes Mellitus Experimental , Nanopartículas , Administração Oral , Animais , Células CACO-2 , Diabetes Mellitus Experimental/tratamento farmacológico , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos , Trato Gastrointestinal , Humanos , Porosidade , Ratos , Dióxido de Silício/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA