Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mil Med Res ; 10(1): 10, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36872349

RESUMO

Drug discovery is a crucial part of human healthcare and has dramatically benefited human lifespan and life quality in recent centuries, however, it is usually time- and effort-consuming. Structural biology has been demonstrated as a powerful tool to accelerate drug development. Among different techniques, cryo-electron microscopy (cryo-EM) is emerging as the mainstream of structure determination of biomacromolecules in the past decade and has received increasing attention from the pharmaceutical industry. Although cryo-EM still has limitations in resolution, speed and throughput, a growing number of innovative drugs are being developed with the help of cryo-EM. Here, we aim to provide an overview of how cryo-EM techniques are applied to facilitate drug discovery. The development and typical workflow of cryo-EM technique will be briefly introduced, followed by its specific applications in structure-based drug design, fragment-based drug discovery, proteolysis targeting chimeras, antibody drug development and drug repurposing. Besides cryo-EM, drug discovery innovation usually involves other state-of-the-art techniques such as artificial intelligence (AI), which is increasingly active in diverse areas. The combination of cryo-EM and AI provides an opportunity to minimize limitations of cryo-EM such as automation, throughput and interpretation of medium-resolution maps, and tends to be the new direction of future development of cryo-EM. The rapid development of cryo-EM will make it as an indispensable part of modern drug discovery.


Assuntos
Inteligência Artificial , Descoberta de Drogas , Humanos , Microscopia Crioeletrônica , Quimera de Direcionamento de Proteólise , Qualidade de Vida
2.
Virology ; 485: 171-8, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26275511

RESUMO

Maize chlorotic mottle virus (MCMV) is the only member of the Machlomovirus genus in the family Tombusviridae. Here, we obtained the Cryo-EM structure of MCMV by single particle analysis with most local resolution at approximately 4 Å. The Cα backbone was built based on residues with bulky side chains. The resolved C-terminus of the capsid protein subunit and obvious openings at the 2-fold axis demonstrated the compactness of the asymmetric unit, which indicates an important role in the stability of MCMV. The Asp116 residue from each subunit around the 5-fold and 3-fold axes contributed to the negative charges in the centers of the pentamers and hexamers, which might serve as a solid barrier against the leakage of genomic RNA. Finally, the loops most exposed on the surface were analyzed and are proposed to be potential functional sites related to MCMV transmission.


Assuntos
Proteínas do Capsídeo/química , Capsídeo/química , Subunidades Proteicas/química , Tombusviridae/química , Zea mays/virologia , Sequência de Aminoácidos , Capsídeo/ultraestrutura , Proteínas do Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Dados de Sequência Molecular , Doenças das Plantas/virologia , Folhas de Planta/química , Folhas de Planta/virologia , Conformação Proteica , Multimerização Proteica , Alinhamento de Sequência , Eletricidade Estática , Tombusviridae/ultraestrutura , Zea mays/química
3.
Sci Rep ; 5: 14825, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26442593

RESUMO

Genome uncoating is a prerequisite for the successful infection of plant viruses in host plants. Thus far, little is known about the genome uncoating of the Carnation mottle virus (CarMV). Here, we obtained two reconstructions of CarMV at pH7 in the presence (Ca-pH7) and absence (EDTA-pH7) of calcium ions by Cryo-EM single particle analysis, which achieved 6.4 Å and 8 Å resolutions respectively. Our results showed that chelation of the calcium ions under EDTA-pH7 resulted in reduced interaction between the subunits near the center of the asymmetric unit but not overall size change of the viral particles, which indicated that the role of the calcium ions in CarMV was not predominantly for the structural preservation. Part of the genomic RNA closest to the capsid was found to be located near the center of the asymmetric unit, which might result from the interaction between genomic RNA and Lys194 residues. Together with the electrostatic potential analysis on the inner surface of the asymmetric unit, the reduced interaction near the center of the asymmetric unit under EDTA-pH7 suggested that the genome release of CarMV might be realized through the center of the asymmetric unit.


Assuntos
Carmovirus/química , Microscopia Crioeletrônica/métodos , Cálcio/química , Capsídeo/química , Carmovirus/genética , Ácido Edético/química , Concentração de Íons de Hidrogênio , Lisina/química , RNA Viral/química , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA