RESUMO
Mutations in the KCNQ2 gene encoding KV7.2 subunit that mediates neuronal M-current cause a severe form of developmental and epileptic encephalopathy (DEE). Electrophysiological evaluation of KCNQ2 mutations has been proved clinically useful in improving outcome prediction and choosing rational anti-seizure medications (ASMs). In this study we described the clinical characteristics, electrophysiological phenotypes and the in vitro response to KCNQ openers of five KCNQ2 pore mutations (V250A, N258Y, H260P, A265T and G290S) from seven patients diagnosed with KCNQ2-DEE. The KCNQ2 variants were transfected into Chinese hamster ovary (CHO) cells alone, in combination with KCNQ3 (1:1) or with wild-type KCNQ2 (KCNQ2-WT) and KCNQ3 in a ratio of 1:1:2, respectively. Their expression and electrophysiological function were assessed. When transfected alone or in combination with KCNQ3, none of these mutations affected the membrane expression of KCNQ2, but most failed to induce a potassium current except A265T, in which trace currents were observed when co-transfected with KCNQ3. When co-expressed with KCNQ2-WT and KCNQ3 (1:1:2), the currents at 0 mV of these mutations were decreased by 30%-70% compared to the KCNQ2/3 channel, which could be significantly rescued by applying KCNQ openers including the approved antiepileptic drug retigabine (RTG, 10 µM), as well as two candidates subjected to clinical trials, pynegabine (HN37, 1 µM) and XEN1101 (1 µM). These newly identified pathologic variants enrich the KCNQ2-DEE mutation hotspots in the pore-forming domain. This electrophysiological study provides a rational basis for personalized therapy with KCNQ openers in DEE patients carrying loss-of-function (LOF) mutations in KCNQ2.
Assuntos
Encefalopatias , Canal de Potássio KCNQ2 , Cricetinae , Animais , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/genética , Canal de Potássio KCNQ3/metabolismo , Células CHO , Cricetulus , Mutação , Encefalopatias/genéticaRESUMO
Voltage-gated sodium channel 1.7 (Nav1.7) remains one of the most promising drug targets for pain relief. In the current study, we conducted a high-throughput screening of natural products in our in-house compound library to discover novel Nav1.7 inhibitors, then characterized their pharmacological properties. We identified 25 naphthylisoquinoline alkaloids (NIQs) from Ancistrocladus tectorius to be a novel type of Nav1.7 channel inhibitors. Their stereostructures including the linkage modes of the naphthalene group at the isoquinoline core were revealed by a comprehensive analysis of HRESIMS, 1D, and 2D NMR spectra as well as ECD spectra and single-crystal X-ray diffraction analysis with Cu Kα radiation. All the NIQs showed inhibitory activities against the Nav1.7 channel stably expressed in HEK293 cells, and the naphthalene ring in the C-7 position displayed a more important role in the inhibitory activity than that in the C-5 site. Among the NIQs tested, compound 2 was the most potent with an IC50 of 0.73 ± 0.03 µM. We demonstrated that compound 2 (3 µM) caused dramatical shift of steady-state slow inactivation toward the hyperpolarizing direction (V1/2 values were changed from -39.54 ± 2.77 mV to -65.53 ± 4.39 mV, which might contribute to the inhibition of compound 2 against the Nav1.7 channel. In acutely isolated dorsal root ganglion (DRG) neurons, compound 2 (10 µM) dramatically suppressed native sodium currents and action potential firing. In the formalin-induced mouse inflammatory pain model, local intraplantar administration of compound 2 (2, 20, 200 nmol) dose-dependently attenuated the nociceptive behaviors. In summary, NIQs represent a new type of Nav1.7 channel inhibitors and may act as structural templates for the following analgesic drug development.
Assuntos
Alcaloides , Canal de Sódio Disparado por Voltagem NAV1.7 , Camundongos , Animais , Humanos , Células HEK293 , Dor/tratamento farmacológico , Neurônios , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Gânglios Espinais , Bloqueadores dos Canais de Sódio/farmacologia , Bloqueadores dos Canais de Sódio/uso terapêuticoRESUMO
Natural polybrominated diphenyl ethers, often isolated from marine sponges, have been reported to possess various biological activities, such as antibacterial, antioxidant and antidiabetic effects. Via a high throughput screening of our marine natural product library, the polybrominated diphenyl ether 3 was found to display a KCNQ potassium channel activation effect. To obtain more compound 3 related natural products and their derivatives for further bioactivity study, a diversity-oriented synthesis was conducted, leading to the successful synthesis of five polybrominated diphenyl ether natural products (1-4, 6) and 30 new derivatives. Compound 3 was found to preferentially potentiate KCNQ1 potassium channel, whereas 17h relatively activated KCNQ2 potassium channel. The structure-activity relationship was analyzed assisted by molecular docking and 17h was further conducted for its agonistic mechanism study on KCNQ2 channel. This research work may give an insight for the discovery of marine polybrominated diphenyl ether derived new drug leads.
Assuntos
Produtos Biológicos , Poríferos , Animais , Produtos Biológicos/farmacologia , Éteres Difenil Halogenados/farmacologia , Canais de Potássio KCNQ , Simulação de Acoplamento MolecularRESUMO
De novo missense mutations in SCN8A gene encoding voltage-gated sodium channel NaV1.6 are linked to a severe form of early infantile epileptic encephalopathy named early infantile epileptic encephalopathy type13 (EIEE13). The majority of the patients with EIEE13 does not respond favorably to the antiepileptic drugs (AEDs) in clinic and has a significantly increased risk of death. Although more than 60 EIEE13-associated mutations have been discovered, only few mutations have been functionally analyzed. In this study we investigated the functional influences of mutations N1466T and N1466K, two EIEE13-associated mutations located in the inactivation gate, on sodium channel properties. Sodium currents were recorded from CHO cells expressing the mutant and wide-type (WT) channels using the whole-cell patch-clamp technique. We found that, in comparison with WT channels, both the mutant channels exhibited increased window currents, persistent currents (INaP) and ramp currents, suggesting that N1466T and N1466K were gain-of-function (GoF) mutations. Sodium channel inhibition is one common mechanism of currently available AEDs, in which topiramate (TPM) was effective in controlling seizures of patients carrying either of the two mutations. We found that TPM (100 µM) preferentially inhibited INaP and ramp currents but did not affect transient currents (INaT) mediated by N1466T or N1466K. Among the other 6 sodium channel-inhibiting AEDs tested, phenytoin and carbamazepine displayed greater efficacy than TPM in suppressing both INaP and ramp currents. Functional characterization of mutants N1466T and N1466K is beneficial for understanding the pathogenesis of EIEE13. The divergent effects of sodium channel-inhibiting AEDs on INaP and ramp currents provide insight into the development of therapeutic strategies for the N1466T and N1466K-associated EIEE13.
Assuntos
Epilepsia , Espasmos Infantis , Animais , Cricetinae , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Mutação com Ganho de Função , Cricetulus , Espasmos Infantis/genética , Epilepsia/tratamento farmacológico , Epilepsia/genética , Canais de Sódio , Mutação , FenótipoRESUMO
Lack of efficiency has been a major problem shared by all currently developed anti-SARS-CoV-2 therapies. Our previous study shows that SARS-CoV-2 structural envelope (2-E) protein forms a type of cation channel, and heterogeneously expression of 2-E channels causes host cell death. In this study we developed a cell-based high throughput screening (HTS) assay and used it to discover inhibitors against 2-E channels. Among 4376 compounds tested, 34 hits with cell protection activity were found. Followed by an anti-viral analysis, 15 compounds which could inhibit SARS-CoV-2 replication were identified. In electrophysiological experiments, three representatives showing inhibitory effect on 2-E channels were chosen for further characterization. Among them, proanthocyanidins directly bound to 2-E channel with binding affinity (KD) of 22.14 µM in surface plasmon resonance assay. Molecular modeling and docking analysis revealed that proanthocyanidins inserted into the pore of 2-E N-terminal vestibule acting as a channel blocker. Consistently, mutations of Glu 8 and Asn 15, two residues lining the proposed binding pocket, abolished the inhibitory effects of proanthocyanidins. The natural product proanthocyanidins are widely used as cosmetic, suggesting a potential of proanthocyanidins as disinfectant for external use. This study further demonstrates that 2-E channel is an effective antiviral drug target and provides a potential antiviral candidate against SARS-CoV-2.
Assuntos
Antivirais , COVID-19 , Antivirais/química , Antivirais/farmacologia , Ensaios de Triagem em Larga Escala , Humanos , Simulação de Acoplamento Molecular , SARS-CoV-2RESUMO
(-)-Naringenin 4',7-dimethyl ether ((-)-NRG-DM) was isolated for the first time by our lab from Nardostachys jatamansi DC, a traditional medicinal plant frequently used to attenuate pain in Asia. As a natural derivative of analgesic, the current study was designed to test the potential analgesic activity of (-)-NRG-DM and its implicated mechanism. The analgesic activity of (-)-NRG-DM was assessed in a formalin-induced mouse inflammatory pain model and mustard oil-induced mouse colorectal pain model, in which the mice were intraperitoneally administrated with vehicle or (-)-NRG-DM (30 or 50 mg/kg) (n = 10 for each group). Our data showed that (-)-NRG-DM can dose dependently (30~50 mg/kg) relieve the pain behaviors. Notably, (-)-NRG-DM did not affect motor coordination in mice evaluated by the rotarod test, in which the animals were intraperitoneally injected with vehicle or (-)-NRG-DM (100, 200, or 400 mg/kg) (n = 10 for each group). In acutely isolated mouse dorsal root ganglion neurons, (-)-NRG-DM (1~30 µM) potently dampened the stimulated firing, reduced the action potential threshold and amplitude. In addition, the neuronal delayed rectifier potassium currents (IK) and voltage-gated sodium currents (INa) were significantly suppressed. Consistently, (-)-NRG-DM dramatically inhibited heterologously expressed Kv2.1 and Nav1.8 channels which represent the major components of the endogenous IK and INa. A pharmacokinetic study revealed the plasma concentration of (-)-NRG-DM is around 7 µM, which was higher than the effective concentrations for the IK and INa. Taken together, our study showed that (-)-NRG-DM is a potential analgesic candidate with inhibition of multiple neuronal channels (mediating IK and INa).
Assuntos
FlavanonasRESUMO
A library of new 2-substituted pyrrolo[1,2-b]pyridazine derivatives were rapidly assembled and identified as PARP inhibitors. Structure-activity relationship for this class of inhibitor resulted in the discovery of most potent compounds 15a and 15b that exhibited about 29- and 5- fold selective activity against PARP-1 over PARP-2 respectively. The antiproliferative activity of the as-prepared compounds were demonstrated by further celluar assay in BRCA2-deficient V-C8 and BRCA1-deficient MDA-MB-436 cell lines, displaying that compound 15b could robustly reduce the corresponding cell proliferation and growth with CC50s of 340 and 106 nM respectively. The PK property of 15b was also investigated here.
Assuntos
Antineoplásicos/farmacologia , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Piridazinas/farmacologia , Pirróis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/síntese química , Inibidores de Poli(ADP-Ribose) Polimerases/química , Piridazinas/síntese química , Piridazinas/química , Pirróis/síntese química , Pirróis/química , Relação Estrutura-AtividadeRESUMO
Nav1.7 channels are mainly distributed in the peripheral nervous system. Blockade of Nav1.7 channels with small-molecule inhibitors in humans might provide pain relief without affecting the central nervous system. Based on the facts that many reported Nav1.7-selective inhibitors contain aryl sulfonamide fragments, as well as a tricyclic antidepressant, maprotiline, has been found to inhibit Nav1.7 channels, we designed and synthesized a series of compounds with ethanoanthracene and aryl sulfonamide moieties. Their inhibitory activity on sodium channels were detected with electrophysiological techniques. We found that compound 10o potently inhibited Nav1.7 channels stably expressed in HEK293 cells (IC50 = 0.64 ± 0.30 nmol/L) and displayed a high Nav1.7/Nav1.5 selectivity. In mouse small-sized dorsal root ganglion neurons, compound 10o (10, 100 nmol/L) dose-dependently decreased the sodium currents and dramatically suppressed depolarizing current-elicited neuronal discharge. Preliminary in vivo experiments showed that compound 10o possessed good analgesic activity: in a mouse visceral pain model, administration of compound 10o (30-100 mg/kg, i.p.) effectively and dose-dependently suppressed acetic acid-induced writhing.
Assuntos
Analgésicos/farmacologia , Descoberta de Drogas , Maprotilina/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Dor/tratamento farmacológico , Bloqueadores dos Canais de Sódio/farmacologia , Sulfonamidas/farmacologia , Ácido Acético , Analgésicos/administração & dosagem , Analgésicos/química , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Injeções Intraperitoneais , Masculino , Maprotilina/administração & dosagem , Maprotilina/química , Camundongos , Camundongos Endogâmicos ICR , Estrutura Molecular , Dor/induzido quimicamente , Medição da Dor , Bloqueadores dos Canais de Sódio/administração & dosagem , Bloqueadores dos Canais de Sódio/química , Relação Estrutura-Atividade , Sulfonamidas/administração & dosagem , Sulfonamidas/químicaRESUMO
Geissoschizine methyl ether (GM) is an indole alkaloid isolated from Uncaria rhynchophyll (UR) that has been used for the treatment of epilepsy in traditional Chinese medicine. An early study in a glutamate-induced mouse seizure model demonstrated that GM was one of the active ingredients of UR. In this study, electrophysiological technique was used to explore the mechanism underlying the antiepileptic activity of GM. We first showed that GM (1-30 µmol/L) dose-dependently suppressed the spontaneous firing and prolonged the action potential duration in cultured mouse and rat hippocampal neurons. Given the pivotal roles of ion channels in regulating neuronal excitability, we then examined the effects of GM on both voltage-gated and ligand-gated channels in rat hippocampal neurons. We found that GM is an inhibitor of multiple neuronal channels: GM potently inhibited the voltage-gated sodium (NaV), calcium (CaV), and delayed rectifier potassium (IK) currents, and the ligand-gated nicotinic acetylcholine (nACh) currents with IC50 values in the range of 1.3-13.3 µmol/L. In contrast, GM had little effect on the voltage-gated transient outward potassium currents (IA) and four types of ligand-gated channels (γ-amino butyric acid (GABA), N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainite (AMPA/KA receptors)). The in vivo antiepileptic activity of GM was validated in two electricity-induced seizure models. In the maximal electroshock (MES)-induced mouse seizure model, oral administration of GM (50-100 mg/kg) dose-dependently suppressed generalized tonic-clonic seizures. In 6-Hz-induced mouse seizure model, oral administration of GM (100 mg/kg) reduced treatment-resistant seizures. Thus, we conclude that GM is a promising antiepileptic candidate that inhibits multiple neuronal channels.
Assuntos
Anticonvulsivantes/farmacologia , Hipocampo/efeitos dos fármacos , Alcaloides Indólicos/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Convulsões/tratamento farmacológico , Animais , Canais de Cálcio , Modelos Animais de Doenças , Eletrochoque , Ativação do Canal Iônico/genética , Masculino , Camundongos , Camundongos Endogâmicos , Ratos , Ratos Sprague-DawleyRESUMO
Lappaconitine (LA) has been widely used for postoperative and cancer pain control. LA exhibits excellent analgesic activity with a longer effective time than common local anesthetics such as tetracaine and bupivacaine. However, the mechanisms underlying the featured analgesic activity of LA remain largely unknown. Here, we report that LA is an inhibitor of voltage-gated sodium channel 1.7 (Nav1.7) stably expressed in human embryonic kidney (HEK293) cells. LA inhibited Nav1.7 in a voltage-dependent manner with an IC50 value (with 95% confidence limits) of 27.67 (15.68-39.66) µmol/L when the cell was clamped at -70 mV. In comparison with the quick and reversible inhibition of Nav1.7 by tetracaine and bupivacaine, the inhibitory effect of LA was rather slow and irreversible. It took more than 10 min to achieve steady-state inhibition when LA (300 µmol/L) was administered. Unlike tetracaine and bupivacaine, LA affected neither the voltage-dependent activation nor the inactivation of the channels. Five residues in domain III and domain IV have been reported to be critical for the effects of the two local anesthetics on Nav channels. But our mutant study revealed that only two residues (F1737, N1742) located in domain IV were necessary for the inhibitory activity of LA. The slow onset, irreversibility, and lack of influence on channel activation and inactivation accompanied with the different molecular determinants suggest that LA may inhibit Nav1.7 channels in a manner different from local anesthetics. These results may help to understand the featured analgesic activity of LA, thus benefiting its application in the clinic and future drug development.
Assuntos
Aconitina/análogos & derivados , Analgésicos não Narcóticos/farmacologia , Canais de Sódio Disparados por Voltagem/metabolismo , Aconitina/administração & dosagem , Aconitina/química , Aconitina/farmacologia , Analgésicos não Narcóticos/química , Células Cultivadas , Células HEK293 , Humanos , Estrutura Molecular , Isoformas de Proteínas/efeitos dos fármacosRESUMO
Recent studies identified HN38 as a novel KCNQ2 channel inhibitor. However, to date no study has carefully examined HN38 in regards to its mechanism of action or determined whether it inhibits KCNQ2/3 channels. To address these questions, we used heterologous expression of human KCNQ2/3 channels in HEK293T cells. Consistent with previous reports, we found that HN38 almost completely blocked KCNQ2 channel activity. This inhibition was independent of the presence of the KCNQ1-5 auxiliary neuronal subunit beta-secretase 1 (BACE-1). Similar to its parent compound, retigabine, HN38 required the presence of KCNQ2 tryptophan W236 for inhibition. Surprisingly, we found that HN38 maximally inhibited KCNQ2/3 channels, as well as the KCNQ2/3-mediated M-current in CA1 pyramidal neurons, by approximately 40%. This incomplete block of KCNQ2/3 channels by HN38 appears to be partially due to the conformation of the KCNQ2/3 outer vestibule and in particular the outer turret lysine 259 of KCNQ3 channels. We conclude that the KCNQ3 outer vestibule conformation regulates the ability of blockers, like HN38 as well as XE991, to inhibit KCNQ2/3 channels, which should be considered for the design of new KCNQ2/3 channels compounds.
RESUMO
A series of N-sulfonaminoethyloxime derivatives of dehydroabietic acid were synthesized and investigated for their antibacterial activity against Staphylococcus aureus Newman strain and multidrug-resistant strains (NRS-1, NRS-70, NRS-100, NRS-108 and NRS-271). Most of the target compounds having chloro, bromo, trifluoromethyl phenyl moiety exhibited potent in vitro antistaphylococcal activity. The meta-CF3 phenyl derivative T23 showed the highest activity with MIC of 0.39-0.78⯵g/mL against S. aureus Newman, while several analogues showed similar potent antibacterial activity with MIC values between 0.78 and 1.56⯵g/mL against five multidrug-resistant S. aureus. The stability of T35 in plasma of SD rat and the cellular cytotoxicity were also evaluated.
Assuntos
Abietanos/química , Antibacterianos/síntese química , Oximas/química , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Estabilidade de Medicamentos , Testes de Sensibilidade Microbiana , Oximas/metabolismo , Oximas/farmacologia , Ratos , Ratos Sprague-Dawley , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-AtividadeRESUMO
The Nav1.7 channel represents a promising target for pain relief. In the recent decades, a number of Nav1.7 channel inhibitors have been developed. According to the effects on channel kinetics, these inhibitors could be divided into two major classes: reducing activation or enhancing inactivation. To date, however, only several inhibitors have moved forward into phase 2 clinical trials and most of them display a less than ideal analgesic efficacy, thus intensifying the controversy regarding if an ideal candidate should preferentially affect the activation or inactivation state. In the present study, we investigated the action mechanisms of a recently clinically confirmed inhibitor CNV1014802 using both electrophysiology and site-directed mutagenesis. We found that CNV1014802 inhibited Nav1.7 channels through stabilizing a nonconductive inactivated state. When the cells expressing Nav1.7 channels were hold at 70 mV or 120 mV, the half maximal inhibitory concentration (IC50) values (with 95% confidence limits) were 1.77 (1.20-2.33) and 71.66 (46.85-96.48) µmol/L, respectively. This drug caused dramatic hyperpolarizing shift of channel inactivation but did not affect activation. Moreover, CNV1014802 accelerated the onset of inactivation and delayed the recovery from inactivation. Notably, application of CNV1014802 (30 µmol/L) could rescue the Nav1.7 mutations expressed in CHO cells that cause paroxysmal extreme pain disorder (PEPD), thereby restoring the impaired inactivation to those of the wild-type channel. Our study demonstrates that CNV1014802 enhances the inactivation but does not reduce the activation of Nav1.7 channels, suggesting that identifying inhibitors that preferentially affect inactivation is a promising approach for developing drugs targeting Nav1.7.
Assuntos
Analgésicos/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Éteres Fenílicos/farmacologia , Prolina/análogos & derivados , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Animais , Células CHO , Cricetulus , Fenômenos Eletrofisiológicos , Células HEK293 , Humanos , Mutagênese Sítio-Dirigida , Mutação , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Prolina/farmacologiaAssuntos
Epilepsia , Convulsões , Camundongos , Animais , Convulsões/genética , Convulsões/terapia , Epilepsia/genética , Epilepsia/terapia , FenótipoRESUMO
Nine new C21 steroidal glycosides, named cynawilfosides A-I (1-9), along with 12 known compounds were isolated from the roots of Cynanchum wilfordii. The structures of the new compounds were elucidated by spectroscopic analysis and chemical methods. The five major components, cynawilfoside A (1), cynauricoside A (11), wilfoside C1N (16), wilfoside K1N (17), and cyanoauriculoside G (18), exhibited significant protection activity in a maximal electroshock (MES)-induced mouse seizure model with ED50 values of 48.5, 95.3, 124.1, 72.3, and 88.1 mg/kg, respectively.
Assuntos
Anticonvulsivantes/isolamento & purificação , Anticonvulsivantes/farmacologia , Cynanchum/química , Glicosídeos/isolamento & purificação , Glicosídeos/farmacologia , Pregnanos/isolamento & purificação , Pregnanos/farmacologia , Animais , Anticonvulsivantes/química , Modelos Animais de Doenças , Glicosídeos/química , Camundongos , Estrutura Molecular , Raízes de Plantas/química , Pregnanos/química , Saponinas , ConvulsõesRESUMO
AIM: To establish an improved, high-throughput screening techniques for identifying novel KCNQ2 channel activators. METHODS: KCNQ2 channels were stably expressed in CHO cells (KCNQ2 cells). Thallium flux assay was used for primary screening, and 384-well automated patch-clamp IonWorks Barracuda was used for hit validation. Two validated activators were characterized using a conventional patch-clamp recording technique. RESULTS: From a collection of 80 000 compounds, the primary screening revealed a total of 565 compounds that potentiated the fluorescence signals in thallium flux assay by more than 150%. When the 565 hits were examined in IonWorks Barracuda, 38 compounds significantly enhanced the outward currents recorded in KCNQ2 cells, and were confirmed as KCNQ2 activators. In the conventional patch-clamp recordings, two validated activators ZG1732 and ZG2083 enhanced KCNQ2 currents with EC50 values of 1.04±0.18 µmol/L and 1.37±0.06 µmol/L, respectively. CONCLUSION: The combination of thallium flux assay and IonWorks Barracuda assay is an efficient high-throughput screening (HTS) route for discovering KCNQ2 activators.
Assuntos
Bases de Dados de Compostos Químicos , Canal de Potássio KCNQ2/metabolismo , Animais , Células CHO , Cricetulus , Fluorescência , Ensaios de Triagem em Larga Escala , Ativação do Canal Iônico , Técnicas de Patch-Clamp , Tálio/metabolismoRESUMO
AIM: Retigabine, an activator of KCNQ2-5 channels, is currently used to treat partial-onset seizures. The aim of this study was to explore the possibility that structure modification of retigabine could lead to novel inhibitors of KCNQ2 channels, which were valuable tools for KCNQ channel studies. METHODS: A series of retigabine derivatives was designed and synthesized. KCNQ2 channels were expressed in CHO cells. KCNQ2 currents were recorded using whole-cell voltage clamp technique. Test compound in extracellular solution was delivered to the recorded cell using an ALA 8 Channel Solution Exchange System. RESULTS: A total of 23 retigabine derivatives (HN31-HN410) were synthesized and tested electrophysiologically. Among the compounds, HN38 was the most potent inhibitor of KCNQ2 channels (its IC50 value=0.10 ± 0.05 µmol/L), and was 7-fold more potent than the classical KCNQ inhibitor XE991. Further analysis revealed that HN38 (3 µmol/L) had no detectable effect on channel activation, but accelerated deactivation at hyperpolarizing voltages. In contrast, XE991 (3 µmol/L) did not affect the kinetics of channel activation and deactivation. CONCLUSION: The retigabine derivative HN38 is a potent KCNQ2 inhibitor, which differs from XE991 in its influence on the channel kinetics. Our study provides a new strategy for the design and development of potent KCNQ2 channel inhibitors.
Assuntos
Anticonvulsivantes/farmacologia , Carbamatos/farmacologia , Canal de Potássio KCNQ2/antagonistas & inibidores , Fenilenodiaminas/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Animais , Antracenos/farmacologia , Anticonvulsivantes/síntese química , Anticonvulsivantes/química , Células CHO , Carbamatos/síntese química , Carbamatos/química , Cricetinae , Cricetulus , Desenho de Fármacos , Concentração Inibidora 50 , Técnicas de Patch-Clamp , Fenilenodiaminas/síntese química , Fenilenodiaminas/química , Bloqueadores dos Canais de Potássio/síntese química , Bloqueadores dos Canais de Potássio/química , Relação Estrutura-AtividadeRESUMO
Epilepsy is a common neurological disorder that is primarily treated with antiseizure medications (ASMs). Although dozens of ASMs are available in the clinic, approximately 30% of epileptic patients have medically refractory seizures; other limitations in most traditional ASMs include poor tolerability and drug-drug interactions. Therefore, there is an urgent need to develop alternative ASMs. Levetiracetam (LEV) is a first-line ASM that is well tolerated, has promising efficacy, and has little drug-drug interaction. Although it is widely accepted that LEV acts through a unique therapeutic target synaptic vesicle protein (SV) 2A, the molecular basis of its action remains unknown. Even so, the next-generation SV2A ligands against epilepsy based on the structure of LEV have achieved clinical success. This review highlights the research and development (R&D) process of LEV and its analogs, brivaracetam and padsevonil, to provide ideas and experience for the R&D of novel ASMs.
RESUMO
Eighteen new limonoids, chubularisins A-R (1-18), along with eleven known analogues, were isolated from the stem bark of Chukrasia tabularis. The structures of 1-18 were elucidated on the basis of spectroscopic data and chemical evidence. Compound 1 represented the first example of 8,9,12-orthoester of phragmalin limonoids. Interestingly, compounds 4, 8, and 22 exhibited potent and selective inhibition against the delayed rectifier (I(K)) K(+) current with IC(50) values of 0.61, 2.03, and 2.15 µM, respectively.