Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36430405

RESUMO

Neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), or systemic amyloidosis, are characterized by the specific protein transformation from the native state to stable insoluble deposits, e.g., amyloid plaques. The design of potential therapeutic agents and drugs focuses on the destabilization of the bonds in their beta-rich structures. Surprisingly, ferritin derivatives have recently been proposed to destabilize fibril structures. Using atomic force microscopy (AFM) and fluorescence spectrophotometry, we confirmed the destructive effect of reconstructed ferritin (RF) and magnetoferritin (MF) on lysosome amyloid fibrils (LAF). The presence of iron was shown to be the main factor responsible for the destruction of LAF. Moreover, we found that the interaction of RF and MF with LAF caused a significant increase in the release of potentially harmful ferrous ions. Zeta potential and UV spectroscopic measurements of LAF and ferritin derivative mixtures revealed a considerable difference in RF compared to MF. Our results contribute to a better understanding of the mechanism of fibril destabilization by ferritin-like proteins. From this point of view, ferritin derivatives seem to have a dual effect: therapeutic (fibril destruction) and adverse (oxidative stress initiated by increased Fe2+ release). Thus, ferritins may play a significant role in various future biomedical applications.


Assuntos
Amiloide , Muramidase , Amiloide/metabolismo , Muramidase/química , Ferritinas , Ferro/metabolismo
2.
Molecules ; 27(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36296512

RESUMO

Nicotine hydrochloride (NCT) has a good control effect on hemiptera pests, but its poor interfacial behavior on the hydrophobic leaf leads to few practical applications. In this study, a vesicle solution by the eco-friendly surfactant, sodium diisooctyl succinate sulfonate (AOT), was prepared as the pesticide carrier for NCT. The physical chemical properties of NCT-loaded AOT vesicles (NCT/AOT) were investigated by techniques such as dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), and cryogenic transmission electron microscopy (cryo-TEM). The results showed that the pesticide loading and encapsulation efficiency of NCT/AOT were 10.6% and 94.8%, respectively. The size of NCT/AOT vesicle was about 177 nm. SAXS and surface tension results indicated that the structure of the NCT/AOT vesicle still existed with low surface tension even after being diluted 200 times. The contact angle of NCT/AOT was always below 30°, which means it could wet the surface of the cabbage leaf well. Consequently, NCT/AOT vesicles could effectively reduce the bounce of pesticide droplets. In vitro release experiments showed that NCT/AOT vesicles had sustained release properties; 60% of NCT in NCT/AOT released after 24 h, and 80% after 48 h. Insecticidal activity assays against aphids revealed that AOT vesicles exhibited insecticidal activity and could have a synergistic insecticidal effect with NCT after the loading of NCT. Thus, the NCT/AOT vesicles significantly improved the insecticidal efficiency of NCT, which has potential application in agricultural production activities.


Assuntos
Inseticidas , Surfactantes Pulmonares , Preparações de Ação Retardada/química , Inseticidas/farmacologia , Nicotina/farmacologia , Espalhamento a Baixo Ângulo , Sódio , Succinatos/química , Tensoativos/farmacologia , Tensoativos/química , Difração de Raios X
3.
Chemistry ; 27(59): 14586-14593, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34406694

RESUMO

Although incorporation of photo-activatable lipids into membranes potentially opens up novel avenues for investigating interactions with proteins, the question of whether diazirine-modified lipids are suitable for such studies, remains under debate. Focusing on the potential for studying lipid/peptide interactions by cross-linking mass spectrometry (XL-MS), we developed a diazirine-modified lipid (DiazPC), and examined its behaviour in membranes incorporating the model α-helical peptide LAVA20. We observed an unexpected backfolding of the diazirine-containing stearoyl chain of the lipid. This surprising behaviour challenges the potential application of DiazPC for future XL-MS studies of peptide and protein/lipid interactions. The observations made for DiazPC most likely represent a general phenomenon for any type of membrane lipids with a polar moiety incorporated into the alkyl chain. Our finding is therefore of importance for future protein/lipid interaction studies relying on modified lipid probes.


Assuntos
Diazometano , Lipídeos de Membrana , Reagentes de Ligações Cruzadas , Espectrometria de Massas , Peptídeos
4.
Molecules ; 26(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34834056

RESUMO

Ferritin, a spherically shaped protein complex, is responsible for iron storage in bacteria, plants, animals, and humans. Various ferritin iron core compositions in organisms are associated with specific living requirements, health state, and different biochemical roles of ferritin isomers. Magnetoferritin, a synthetic ferritin derivative, serves as an artificial model system of unusual iron phase structures found in humans. We present the results of a complex structural study of magnetoferritins prepared by controlled in vitro synthesis. Using various complementary methods, it was observed that manipulation of the synthesis technology can improve the physicochemical parameters of the system, which is useful in applications. Thus, a higher synthesis temperature leads to an increase in magnetization due to the formation of the magnetite phase. An increase in the iron loading factor has a more pronounced impact on the protein shell structure in comparison with the pH of the aqueous medium. On the other hand, a higher loading factor at physiological temperature enhances the formation of an amorphous phase instead of magnetite crystallization. It was confirmed that the iron-overloading effect alone (observed during pathological events) cannot contribute to the formation of magnetite.

5.
Molecules ; 25(17)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867196

RESUMO

Hyaluronan is an essential physiological bio macromolecule with different functions. One prominent area is the synovial fluid which exhibits remarkable lubrication properties. However, the synovial fluid is a multi-component system where different macromolecules interact in a synergetic fashion. Within this study we focus on the interaction of hyaluronan and phospholipids, which are thought to play a key role for lubrication. We investigate how the interactions and the association structures formed by hyaluronan (HA) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) are influenced by the molecular weight of the bio polymer and the ionic composition of the solution. We combine techniques allowing us to investigate the phase behavior of lipids (differential scanning calorimetry, zeta potential and electrophoretic mobility) with structural investigation (dynamic light scattering, small angle scattering) and theoretical simulations (molecular dynamics). The interaction of hyaluronan and phospholipids depends on the molecular weight, where hyaluronan with lower molecular weight has the strongest interaction. Furthermore, the interaction is increased by the presence of calcium ions. Our simulations show that calcium ions are located close to the carboxylate groups of HA and, by this, reduce the number of formed hydrogen bonds between HA and DPPC. The observed change in the DPPC phase behavior can be attributed to a local charge inversion by calcium ions binding to the carboxylate groups as the binding distribution of hyaluronan and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine is not changed.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Cálcio/química , Ácido Hialurônico/química , Fricção , Ligação de Hidrogênio , Lubrificação , Peso Molecular , Propriedades de Superfície
6.
Langmuir ; 35(38): 12439-12450, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31456406

RESUMO

In this study, we describe the miscibility of four azide-modified membrane phospholipids (azidolipids) with conventional phospholipids. The azidolipids bear an azide group at different positions of the sn-1 or sn-2 alkyl chain and they further differ in the type of linkage (ester vs ether) of the sn-2 alkyl chain. Investigations regarding the miscibility of the azidolipids with bilayer-forming phosphatidylcholines will evaluate lipid mixtures that are suitable for the production of stable azidolipid-doped liposomes. These vesicles then serve as model membranes for the incorporation of model peptides or proteins in the future. The miscibility of both types of phospholipids was studied by calorimetric assays, electron microscopy, small-angle X-ray scattering, infrared spectroscopy, and dynamic light scattering to provide a complete biophysical characterization of the mixed systems.


Assuntos
Azidas/química , Fosfatidilcolinas/química , Modelos Moleculares , Conformação Molecular
7.
Langmuir ; 35(45): 14532-14542, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31635451

RESUMO

We report pH-responsive liquid crystalline lipid nanoparticles, which are dual-loaded by Brucea javanica oil (BJO) and doxorubicin hydrochloride (DOX) and display a pH-induced inverted hexagonal (pH = 7.4) to cubic (pH = 6.8) to emulsified microemulsion (pH = 5.3) phase transition with a therapeutic application in cancer inhibition. BJO is a traditional herbal medicine that strongly inhibits the proliferation and metastasis of various cancers. Doxorubicin is an antitumor drug, which prevents DNA replication and hampers protein synthesis through intercalation between the base pairs of the DNA helices. Its dose-dependent cardiotoxicity imposes the need for safe delivery carriers. Here, pH-induced changes in the structural and interfacial properties of designed multicomponent drug delivery (monoolein-oleic acid-BJO-DOX) systems are determined by synchrotron small-angle X-ray scattering and the Langmuir film balance technique. The nanocarrier assemblies display good physical stability in the studied pH range and adequate particle sizes and ζ-potentials. Their interaction with model lipid membrane interfaces is enhanced under acidic pH conditions, which mimic the microenvironment around tumor cells. In vitro cytotoxicity and apoptosis studies with BJO-DOX dual-loaded pH-switchable liquid crystalline nanoparticles are performed on the human breast cancer Michigan Cancer Foundation-7 (MCF-7) cell line and MCF-7 cells with doxorubicin resistance (MCF-7/DOX), respectively. The obtained pH-sensitive nanomedicines exhibit enhanced antitumor efficacy. The performed preliminary studies suggest a potential reversal of the resistance of the MCF-7/DOX cells to DOX. These results highlight the necessity for further understanding the link between the established pH-dependent drug release profiles of the nanocarriers and the role of their pH-switchable inverted hexagonal, bicontinuous cubic, and emulsified microemulsion inner organizations for therapeutic outcomes.


Assuntos
Antibióticos Antineoplásicos/química , Brucea/química , Doxorrubicina/química , Sistemas de Liberação de Medicamentos , Lipídeos/química , Nanopartículas/química , Óleos de Plantas/química , Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Tamanho da Partícula , Sementes/química , Propriedades de Superfície
8.
Soft Matter ; 15(36): 7295-7304, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31483431

RESUMO

The molecular mechanisms responsible for outstanding lubrication of natural systems, like articular joints, have been the focus of scientific research for several decades. One essential aspect is the lubrication under pressure, where it is important to understand how the lubricating entities adapt under dynamic working conditions in order to fulfill their function. We made a structural investigation of a model system consisting of two of the molecules present at the cartilage interface, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and hyaluronan, at high hydrostatic pressure. Phospholipid layers are found at the cartilage surfaces and are able to considerably reduce friction. Their behavior under load and varied solution conditions is important as pressures of 180 bar are encountered during daily life activities. We focus on how divalent ions, like Ca2+, affect the interaction between DPPC and hyaluronan, as other investigations have indicated that calcium ions influence their interaction. It could be shown that already low amounts of Ca2+ strongly influence the interaction of hyaluronan with DPPC. Our results suggest that the calcium ions increase the amount of adsorbed hyaluronan indicating an increased electrostatic interaction. Most importantly, we observe a modification of the DPPC phase diagram as hyaluronan absorbs to the bilayer which results in an Lα-like structure at low temperatures and a decoupling of the leaflets forming an asymmetric bilayer structure.

9.
Langmuir ; 34(14): 4360-4373, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29557659

RESUMO

In the present work, we describe the synthesis and the temperature-dependent aggregation behavior of a new class of asymmetrical glycerol diether bolalipids. These bolalipids are composed of a membrane-spanning alkyl chain with 32 carbon atoms (C32) in the sn-3 position, a methyl-branched C16 alkyl chain in the sn-2 position, and a zwitterionic phosphocholine headgroup in the sn-1 position of a glycerol moiety. The long C32 alkyl chain is terminated either by a second phosphocholine (PC-Gly(2C16Me)C32-PC) or by a phosphodimethylethanolamine headgroup (PC-Gly(2C16Me)C32-Me2PE). The temperature- and pH-dependent aggregation behavior of both lipids was studied using differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, small-angle X-ray scattering (SAXS), and small-angle neutron scattering (SANS) experiments. The morphology of the formed aggregates in an aqueous suspension was visualized by transmission electron microscopy (TEM). We show that PC-Gly(2C16Me)C32-PC and PC-Gly(2C16Me)C32-Me2PE at pH 5 self-assemble into large lamellar aggregates and large lipid vesicles. Within these structures, the bolalipid molecules are probably assembled in a monolayer with fully interdigitated chains. The lipid molecules seem to be tilted with respect to the layer normal to ensure a dense packing of the alkyl chains. A temperature increase leads to a transition from a lamellar gel phase to the liquid-crystalline phase at about 28-30 °C for both bolalipids. The lamellar aggregates of PC-Gly(2C16Me)C32-Me2PE started to transform into nanofibers when the pH value of the suspension was increased to above 11. At pH 12, these nanofibers were the dominant aggregates.

10.
Langmuir ; 33(20): 4960-4973, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28457130

RESUMO

In the present work, we describe the synthesis and the temperature-dependent behavior of photoreactive membrane lipids as well as their capability to study peptide/lipid interactions. The modified phospholipids contain an azide group either in the middle part or at the end of an alkyl chain and also differ in the linkage (ester vs ether) of the second alkyl chain. The temperature-dependent aggregation behavior of the azidolipids was studied using differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR) spectroscopy, and small-angle X-ray scattering (SAXS). Aggregate structures were visualized by stain and cryo transmission electron microscopy (TEM) and were further characterized by dynamic light scattering (DLS). We show that the position of the azide group and the type of linkage of the alkyl chain at the sn-2 position of the glycerol influences the type of aggregates formed as well as their long-term stability: P10AzSPC and r12AzSHPC show the formation of extrudable liposomes, which are stable in size during storage. In contrast, azidolipids that carry a terminal azido moiety either form extrudable liposomes, which show time-dependent vesicle fusion (P15AzPdPC), or self-assemble in large sheet-like, nonextrudable aggregates (r15AzPdHPC) where the lipid molecules are arranged in an interdigitated orientation at temperatures below Tm (LßI phase). Finally, a P10AzSPC:DMPC mixture was used for photochemically induced cross-linking experiments with a transmembrane peptide (WAL-peptide) to demonstrate the applicability of the azidolipids for the analysis of peptide/lipid interactions. The efficiency of photo-cross-linking was monitored by attenuated total reflection infrared (ATR-IR) spectroscopy and mass spectrometry (MS).


Assuntos
Azidas/química , Varredura Diferencial de Calorimetria , Lipídeos de Membrana , Espalhamento a Baixo Ângulo , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
11.
Beilstein J Org Chem ; 13: 995-1007, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28684979

RESUMO

In the present work, we describe the synthesis of a single-chain, phenylene-modified bolalipid with two phosphocholine headgroups, PC-C18pPhC18-PC, using a Sonogashira cross-coupling reaction as a key step. The aggregation behaviour was studied as a function of temperature using transmission electron microscopy (TEM), differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR) spectroscopy, and small angle neutron scattering (SANS). We show that our new bolalipid self-assembles into nanofibres, which transform into flexible nanofibres at 27 °C and further to small elongated micelles at 45 °C. Furthermore, the miscibility of the bolalipid with bilayer-forming phosphatidylcholines (DMPC, DPPC, and DSPC) was investigated by means of DSC, TEM, FTIR, and small angle X-ray scattering (SAXS). We could show that the PC-C18pPhC18-PC is partially miscible with saturated phosphatidylcholines; however, closed lipid vesicles with an increased thermal stability were not found. Instead, bilayer fragments and disk-like aggregates are formed.

12.
Beilstein J Org Chem ; 13: 938-951, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28684975

RESUMO

Water-soluble shape-persistent cyclodextrin (CD) polymers with amino-functionalized end groups were prepared starting from diacetylene-modified cyclodextrin monomers by a combined Glaser coupling/click chemistry approach. Structural perfection of the neutral CD polymers and inclusion complex formation with ditopic and monotopic guest molecules were proven by MALDI-TOF and UV-vis measurements. Small-angle neutron and X-ray (SANS/SAXS) scattering experiments confirm the stiffness of the polymer chains with an apparent contour length of about 130 Å. Surface modification of planar silicon wafers as well as AFM tips was realized by covalent bound formation between the terminal amino groups of the CD polymer and a reactive isothiocyanate-silane monolayer. Atomic force measurements of CD polymer decorated surfaces show enhanced supramolecular interaction energies which can be attributed to multiple inclusion complexes based on the rigidity of the polymer backbone and the regular configuration of the CD moieties. Depending on the geometrical configuration of attachment anisotropic adhesion characteristics of the polymer system can be distinguished between a peeling and a shearing mechanism.

13.
Langmuir ; 32(16): 4059-65, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27054848

RESUMO

Interaction of polystyrene-block-poly(methacrylic acid) micelles (PS-PMAA) with cationic surfactant N-dodecylpyridinium chloride (DPCl) in alkaline aqueous solutions was studied by static and dynamic light scattering, SAXS, cryogenic transmission electron microscopy (cryo-TEM), isothermal titration calorimetry (ITC), and time-resolved fluorescence spectroscopy. ITC and fluorescence measurements show that there are two distinct regimes of surfactant binding in the micellar corona (depending on the DPCl content) caused by different interactions of DPCl with PMAA in the inner and outer parts of the corona. The compensation of the negative charge of the micellar corona by DPCl leads to the aggregation of PS-PMAA micelles, and the micelles form colloidal aggregates at a certain critical surfactant concentration. SAXS shows that the aggregates are formed by individual PS-PMAA micelles with intact cores and collapsed coronas interconnected with surfactant micelles by electrostatic interactions. Unlike polyelectrolyte-surfactant complexes formed by free polyelectrolyte chains, the PMAA/DPCl complex with collapsed corona does not contain surfactant micelles.

14.
J Mol Recognit ; 28(11): 656-66, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26038095

RESUMO

The lipocalin ß-lactoglobulin (ß-LG) exists in different natural genetic variants--of which ß-LG A and B are predominant in bovine milk. At physiological conditions the protein dimerizes--building homodimers of ß-LG A and ß-LG B and heterodimers of ß-LG AB. Although ß-LG is one of the most intensely characterized lipocalins, the interaction behavior of ligands with hetero- and homodimers of ß-LG is largely unknown. The present findings revealed significant differences for hetero- and homodimers regarding ligand binding capacity as tested with a model ligand (i.e. surface binding (-)-epigallocatechin gallate (EGCG)). These findings were confirmed using FT-IR, where the addition of EGCG influenced the ß-sheet backbone of homodimer A and B with significantly higher intensity compared to heterodimer AB. Further, shape analysis by SAXS revealed oligomerization of both types of dimers upon addition of EGCG; however, homodimer A and B produced significantly larger aggregates compared to the heterodimer AB. In summary, the present study revealed that EGCG showed significantly different interaction reactivity (binding sites, aggregation size and conformational changes) to the hetero and homodimers of ß-LG in the order ß-LG A > B > AB. The results suggest that conformational differences between homodimers and heterodimers strongly influence the EGCG binding ability. This may also occur with other polyphenols and ligands of ß-LG and gives not only important information for ß-LG binding studies, but may also apply for polymorphisms of other self-aggregating lipocalins.


Assuntos
Catequina/análogos & derivados , Lactoglobulinas/química , Lactoglobulinas/metabolismo , Ligação Proteica/fisiologia , Multimerização Proteica/fisiologia , Animais , Sítios de Ligação/fisiologia , Catequina/química , Catequina/metabolismo , Bovinos , Ligantes , Leite/química , Leite/metabolismo , Estrutura Secundária de Proteína , Espalhamento a Baixo Ângulo , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Difração de Raios X/métodos
15.
Soft Matter ; 11(18): 3686-92, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25820228

RESUMO

Extra-large nanochannel formation in the internal structure of cationic cubosome nanoparticles results from the interplay between charge repulsion and steric stabilization of the lipid membrane interfaces and is evidenced by cryogenic transmission electron microscopy (Cryo-TEM) and synchrotron radiation small-angle X-ray scattering (SAXS). The swollen cubic symmetry of the lipid nanoparticles emerges through a shaping transition of onion bilayer vesicle intermediates containing a fusogenic nonlamellar lipid. Cationic amphiphile cubosome particles, thanks to the advantages of their liquid crystalline soft porous nanoarchitecture and capability for multi-drug nanoencapsulation, appear to be of interest for the design of mitochondrial targeting devices in anti-cancer therapies and as siRNA nanocarriers for gene silencing.


Assuntos
Nanopartículas/química , Polietilenoglicóis/química , Cátions/química , Portadores de Fármacos/química , Cristais Líquidos/química , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Porosidade , Interferência de RNA , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , Espalhamento a Baixo Ângulo , Síncrotrons , Difração de Raios X
16.
Langmuir ; 30(31): 9273-84, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25025213

RESUMO

In the present work, we describe the synthesis of two single-chain phenylene-modified bolalipids, namely PC-C17pPhC17-PC and PC-C17pPhC17-OH, with either symmetrical (phosphocholine) or asymmetrical (phosphocholine and hydroxyl) headgroups using a Sonogashira cross-coupling reaction as key step. The temperature-dependent aggregation behavior of both bolalipids in aqueous suspension was studied using transmission electron microscopy (TEM), differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR) spectroscopy, small angle neutron scattering (SANS), and X-ray scattering. We show that different headgroup symmetries lead to a change in the aggregation behavior: Whereas PC-C17pPhC17-PC forms nanofibers with a diameter of 5.7 nm that transform into small ellipsoidal micelles at 23 °C, the PC-C17pPhC17-OH self-assembles into lamellae with bolalipid molecules in an antiparallel orientation up to high temperatures. Furthermore, the mixing behavior of both bolalipids with bilayer-forming phospholipids (DPPC and DSPC) was studied by means of DSC and TEM. The aim was to stabilize bilayer membranes formed of phospholipids in order to improve these mixed lipid vesicles for drug delivery purposes. We show that the symmetrical PC-C17pPhC17-PC is miscible with DPPC and DSPC; however, closed lipid vesicles are not observed, and elongated micelles and bilayer fragments are found instead. In contrast, the asymmetrical PC-C17pPhC17-OH shows no miscibility with phospholipids at all.


Assuntos
Derivados de Benzeno/química , Lipídeos/química , Fosforilcolina/síntese química , Tamanho da Partícula , Fosforilcolina/química , Propriedades de Superfície
17.
Langmuir ; 30(12): 3363-72, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24593673

RESUMO

The interactions among neutral polymer polyacrylamide (PAM) and the biosurfactant Surfactin and four betaines, N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (SDDAB), N-tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (STDAB), N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (SHDAB), and N-dodecyl-N,N-dimethyl-2-ammonio-acetate (C12BE), in phosphate buffer solution (PBS) have been studied by surface tension measurements, small-angle neutron scattering (SANS), small-angle X-ray scattering (SAXS), and rheological experiments. It has been confirmed that the length of alkyl chain is a key parameter of interaction between betaines and PAM. Differences in scattering contrast between X-ray and neutrons for surfactants and PAM molecules provide the opportunity to separately follow the changes of structure of PAM and surfactant aggregates. At concentrations of betaines higher than CMC (critical micelle concentration) and C2 (CMC of surfactant with the presence of polymer), spherical micelles are formed in betaines and betaines/PAM solutions. Transition from spherical to rod-like aggregates (micelles) has been observed in solutions of Surfactin and Surfactin/SDDAB (αSurfactin = 0.67 (molar fraction)) with addition of 0.8 wt % of PAM. The conformation change of PAM molecules only can be observed for Surfactin/SDDAB/PAM system. Viscosity values follow the structural changes suggested from scattering measurements i.e., gradually increases for mixtures PAM → Surfactin/PAM → Surfactin/SDDAB/PAM in PBS.


Assuntos
Resinas Acrílicas/química , Betaína/química , Tensoativos/química , Difração de Nêutrons , Espalhamento a Baixo Ângulo , Tensão Superficial , Difração de Raios X
18.
Langmuir ; 30(23): 6920-8, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24832357

RESUMO

The objective of the present work was to investigate the effects of the mixture of nonionic/ionic surfactants on nanostructured lipid carriers (NLCs). Nonionic surfactant (polyethylene-poly(propylene glycol), Pluronic F68) and ionic surfactant (octenylsuccinic acid modified gum arabic, GA-OSA) were chosen as emulsifier for NLCs. The NLCs systems, which were composed of lipid matrix, modified 4-dedimethylaminosancycline (CMT-8), and various emulsifier agents, were characterized with dynamic light scattering (DLS), high performance liquid chromatography (HPLC), transmission electron microscopy (TEM), small-angle X-ray scattering (SAXS), differential scanning calorimetry (DSC), in vitro release, and phagocytosis assay. This mixture of nonionic/ionic surfactants showed significant effects on physical properties including particle size, polydispersity index (PDI), entrapment efficiency, and particle morphology. Compared with single stabilizer, this mixed nonionic/ionic surfactant system provided NLCs with better drug carrier properties including prolonged release profile and low phagocytosis by phagocyte. We expect that these explorations can provide a new strategy for the development of lipid nanoparticles as drug delivery.


Assuntos
Portadores de Fármacos/química , Lipídeos/química , Tensoativos/química , Varredura Diferencial de Calorimetria , Microscopia Eletrônica de Transmissão , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Espalhamento a Baixo Ângulo , Difração de Raios X
19.
Langmuir ; 29(34): 10648-57, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23865739

RESUMO

The interactions between the lipopeptide Surfactin and four betaines, N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (SDDAB), N-tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (STDAB), N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (SHDAB), and N-dodecyl-N,N-dimethyl-2-ammonio-acetate (C12BE) are studied by surface tension and small-angle neutron scattering (SANS). SDDAB, STDAB, and SHDAB have the same headgroup but different hydrophobic chains. C12BE has different headgroup but the same hydrophobic chain with SDDAB. According to the interfacial parameters calculated from surface tension, the synergism between Surfactin and betaine is relevant with the molecule structure of betaine and the mole ratio of them. For betaines, the optimum alkyl chain length (STDAB) and long enough separation between positive charge and negative charge in headgroup are responsible for highest synergetic interaction with Surfactin. The aggregates of individual Surfactin and the mixtures of Surfactin and sulfopropyl betaines are predicted to be spherical based on the packing parameter (pp) and the average packing parameter (P(av)), which is in close qualitative agreement with SANS data analysis, while Surfactin/C12BE forms ellipsoidal micelles due to the smaller headgroup of C12BE.


Assuntos
Betaína/química , Lipopeptídeos/química , Peptídeos Cíclicos/química , Tensoativos/química , Interações Medicamentosas , Estrutura Molecular
20.
Soft Matter ; 9(40): 9562-71, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26029763

RESUMO

The self-assembly process in aqueous suspension of two new asymmetrical single-chain bolaamphiphiles, namely 32-{[hydroxy(2-hydroxyethoxy)phosphinyl]oxy}dotriacontane-1-yl-{2-[N-(3-dimethylaminopropyl)-N,N-dimethylammonio]ethylphosphate} (DMAPPC-C32-POH) and 32-hydroxydotriacontane-1-yl-{2-[N-(3-dimethylaminopropyl)-N,N-dimethylammonio]ethylphosphate} (DMAPPC-C32-OH), was studied as a function of temperature using transmission electron microscopy, differential scanning calorimetry, FT-IR-spectroscopy, small angle neutron and small angle X-ray scattering to determine whether the asymmetry of the molecule induces the formation of types of aggregates other than the well characterized helical nanofibres of structurally similar symmetrical single-chain bolaamphiphiles with identical headgroups. DMAPPC-C32-POH in acetate buffer at pH 5 can still form nanofibres, i.e. the asymmetry does not induce the formation of other aggregate structures. However, the fibres display a tendency to break more easily and to form irregular, circular structures. This is also reflected by the rheological properties of the suspension that reveal decreased strain resistance at pH 5. In aqueous suspensions at pH 10, where the headgroups of the molecule are negatively charged, only short fibre segments are formed and no gel formation occurs. At higher temperature these fibres convert into micellar aggregates as observed before for symmetrical bolalipids with large headgroups. In contrast, in aqueous suspensions of DMAPPC-C32-OH, a bolalipid where the size difference of the headgroups is much larger, lamellar structures are formed at pH 10 where the headgroup of the molecule is zwitterionic. At low temperature, the molecules are packed in an orthorhombic lattice with interdigitated chains and a repeat distance between lamellae of 6.2 nm is observed. An increase in temperature leads to a lamellar phase with hexagonal packing of the chains. The chains become liquid-crystalline only at very high temperature above 90 °C. At low pH, when the headgroup of the molecule becomes positively charged, some short elongated micellar aggregates are seen besides sheet-like structures. A temperature increase leads to a similar sequence of transformations of the chain packing until formation of a liquid-crystalline lamellar phase at a temperature close to 90 °C. The results show that the aggregation behaviour of single-chain bolaamphiphiles can not only be tuned by changes in chain length or size of both headgroups but also by the difference in headgroup size and charge in asymmetric bolaamphiphiles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA