Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37420605

RESUMO

Wearable devices are starting to gain popularity, which means that a large portion of the population is starting to acquire these products. This kind of technology comes with a lot of advantages, as it simplifies different tasks people do daily. However, as they recollect sensitive data, they are starting to be targets for cybercriminals. The number of attacks on wearable devices forces manufacturers to improve the security of these devices to protect them. Many vulnerabilities have appeared in communication protocols, specifically Bluetooth. We focus on understanding the Bluetooth protocol and what countermeasures have been applied during their updated versions to solve the most common security problems. We have performed a passive attack on six different smartwatches to discover their vulnerabilities during the pairing process. Furthermore, we have developed a proposal of requirements needed for maximum security of wearable devices, as well as the minimum requirements needed to have a secure pairing process between two devices via Bluetooth.


Assuntos
Dispositivos Eletrônicos Vestíveis , Humanos , Segurança Computacional , Comunicação
2.
Sensors (Basel) ; 23(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36772270

RESUMO

In recent years, cybersecurity has been strengthened through the adoption of processes, mechanisms and rapid sources of indicators of compromise in critical areas. Among the most latent challenges are the detection, classification and eradication of malware and Denial of Service Cyber-Attacks (DoS). The literature has presented different ways to obtain and evaluate malware- and DoS-cyber-attack-related instances, either from a technical point of view or by offering ready-to-use datasets. However, acquiring fresh, up-to-date samples requires an arduous process of exploration, sandbox configuration and mass storage, which may ultimately result in an unbalanced or under-represented set. Synthetic sample generation has shown that the cost associated with setting up controlled environments and time spent on sample evaluation can be reduced. Nevertheless, the process is performed when the observations already belong to a characterized set, totally detached from a real environment. In order to solve the aforementioned, this work proposes a methodology for the generation of synthetic samples of malicious Portable Executable binaries and DoS cyber-attacks. The task is performed via a Reinforcement Learning engine, which learns from a baseline of different malware families and DoS cyber-attack network properties, resulting in new, mutated and highly functional samples. Experimental results demonstrate the high adaptability of the outputs as new input datasets for different Machine Learning algorithms.

3.
Sensors (Basel) ; 22(23)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36501921

RESUMO

Cryptojacking or illegal mining is a form of malware that hides in the victim's computer and takes the computational resources to extract cryptocurrencies in favor of the attacker. It generates significant computational consumption, reducing the computational efficiency of the victim's computer. This attack has increased due to the rise of cryptocurrencies and their profitability and its difficult detection by the user. The identification and blocking of this type of malware have become an aspect of research related to cryptocurrencies and blockchain technology; in the literature, some machine learning and deep learning techniques are presented, but they are still susceptible to improvement. In this work, we explore multiple Machine Learning classification models for detecting cryptojacking on websites, such as Logistic Regression, Decision Tree, Random Forest, Gradient Boosting Classifier, k-Nearest Neighbor, and XGBoost. To this end, we make use of a dataset, composed of network and host features' samples, to which we apply various feature selection methods such as those based on statistical methods, e.g., Test Anova, and other methods as Wrappers, not only to reduce the complexity of the built models but also to discover the features with the greatest predictive power. Our results suggest that simple models such as Logistic Regression, Decision Tree, Random Forest, Gradient Boosting, and k-Nearest Neighbor models, can achieve success rate similar to or greater than that of advanced algorithms such as XGBoost and even those of other works based on Deep Learning.


Assuntos
Algoritmos , Aprendizado de Máquina , Modelos Logísticos
4.
Entropy (Basel) ; 24(7)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35885165

RESUMO

Most of the methods for real-time semantic segmentation do not take into account temporal information when working with video sequences. This is counter-intuitive in real-world scenarios where the main application of such methods is, precisely, being able to process frame sequences as quickly and accurately as possible. In this paper, we address this problem by exploiting the temporal information provided by previous frames of the video stream. Our method leverages a previous input frame as well as the previous output of the network to enhance the prediction accuracy of the current input frame. We develop a module that obtains feature maps rich in change information. Additionally, we incorporate the previous output of the network into all the decoder stages as a way of increasing the attention given to relevant features. Finally, to properly train and evaluate our methods, we introduce CityscapesVid, a dataset specifically designed to benchmark semantic video segmentation networks. Our proposed network, entitled FASSVid improves the mIoU accuracy performance over a standard non-sequential baseline model. Moreover, FASSVid obtains state-of-the-art inference speed and competitive mIoU results compared to other state-of-the-art lightweight networks, with significantly lower number of computations. Specifically, we obtain 71% of mIoU in our CityscapesVid dataset, running at 114.9 FPS on a single NVIDIA GTX 1080Ti and 31 FPS on the NVIDIA Jetson Nano embedded board with images of size 1024×2048 and 512×1024, respectively.

5.
Sensors (Basel) ; 21(9)2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34063577

RESUMO

At present, new data sharing technologies, such as those used in the Internet of Things (IoT) paradigm, are being extensively adopted. For this reason, intelligent security controls have become imperative. According to good practices and security information standards, particularly those regarding security in depth, several defensive layers are required to protect information assets. Within the context of IoT cyber-attacks, it is fundamental to continuously adapt new detection mechanisms for growing IoT threats, specifically for those becoming more sophisticated within mesh networks, such as identity theft and cloning. Therefore, current applications, such as Intrusion Detection Systems (IDS), Intrusion Prevention Systems (IPS), and Security Information and Event Management Systems (SIEM), are becoming inadequate for accurately handling novel security incidents, due to their signature-based detection procedures using the matching and flagging of anomalous patterns. This project focuses on a seldom-investigated identity attack-the Clone ID attack-directed at the Routing Protocol for Low Power and Lossy Networks (RPL), the underlying technology for most IoT devices. Hence, a robust Artificial Intelligence-based protection framework is proposed, in order to tackle major identity impersonation attacks, which classical applications are prone to misidentifying. On this basis, unsupervised pre-training techniques are employed to select key characteristics from RPL network samples. Then, a Dense Neural Network (DNN) is trained to maximize deep feature engineering, with the aim of improving classification results to protect against malicious counterfeiting attempts.

6.
Sensors (Basel) ; 20(16)2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32824014

RESUMO

Currently, social networks present information of great relevance to various government agencies and different types of companies, which need knowledge insights for their business strategies. From this point of view, an important technique for data analysis is to create and maintain an environment for collecting data and transforming them into intelligence information to enable analysts to observe the evolution of a given topic, elaborate the analysis hypothesis, identify botnets, and generate data to aid in the decision-making process. Focusing on collecting, analyzing, and supporting decision-making, this paper proposes an architecture designed to monitor and perform anonymous real-time searches in tweets to generate information allowing sentiment analysis on a given subject. Therefore, a technological structure and its implementation are defined, followed by processes for data collection and analysis. The results obtained indicate that the proposed solution provides a high capacity to collect, process, search, analyze, and view a large number of tweets in several languages, in real-time, with sentiment analysis capabilities, at a low cost of implementation and operation.


Assuntos
Coleta de Dados , Tomada de Decisões , Mídias Sociais
7.
Entropy (Basel) ; 22(2)2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33285978

RESUMO

Smart contracts have gained a lot of popularity in recent times as they are a very powerful tool for the development of decentralised and automatic applications in many fields without the need for intermediaries or trusted third parties. However, due to the decentralised nature of the blockchain on which they are based, a series of challenges have emerged related to vulnerabilities in their programming that, given their particularities, could have (and have already had) a very high economic impact. This article provides a holistic view of security challenges associated with smart contracts, as well as the state of the art of available public domain tools.

8.
Sensors (Basel) ; 19(6)2019 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-30884888

RESUMO

The next generation of 5G networks is being developed to provide services with the highest Quality of Service (QoS) attributes, such as ultra-low latency, ultra-reliable communication, high data rates, and high user mobility experience. To this end, several new settings must be implemented in the mobile network architecture such as the incorporation of Network Function Virtualization (NFV) and Software-Defined Networking (SDN), along with the shift of processes to the edge of the network. This work proposes an architecture combining the NFV and SDN concepts to provide the logic for Quality of Service (QoS) traffic detection and the logic for QoS management in next-generation mobile networks. It can be applied to the mobile backhaul and the mobile core network to work with both 5G mobile access networks or current 4G access networks, keeping backward compatibility with current mobile devices. In order to manage traffic without QoS and with QoS requirements, this work incorporates Multiprotocol Label Switching (MPLS) in the mobile data plane. A new flexible and programmable method to detect traffic with QoS requirements is also proposed, along with an Evolved Packet System (EPS)-bearer/QoS-flow creation with QoS considering all elements in the path. These goals are achieved by using proactive and reactive path setup methods to route the traffic immediately and simultaneously process it in the search for QoS requirements. Finally, a prototype is presented to prove the benefits and the viability of the proposed concepts.

9.
Sensors (Basel) ; 19(13)2019 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-31252574

RESUMO

The counting of vehicles plays an important role in measuring the behavior patterns of traffic flow in cities, as streets and avenues can get crowded easily. To address this problem, some Intelligent Transport Systems (ITSs) have been implemented in order to count vehicles with already established video surveillance infrastructure. With this in mind, in this paper, we present an on-line learning methodology for counting vehicles in video sequences based on Incremental Principal Component Analysis (Incremental PCA). This incremental learning method allows us to identify the maximum variability (i.e., motion detection) between a previous block of frames and the actual one by using only the first projected eigenvector. Once the projected image is obtained, we apply dynamic thresholding to perform image binarization. Then, a series of post-processing steps are applied to enhance the binary image containing the objects in motion. Finally, we count the number of vehicles by implementing a virtual detection line in each of the road lanes. These lines determine the instants where the vehicles pass completely through them. Results show that our proposed methodology is able to count vehicles with 96.6% accuracy at 26 frames per second on average-dealing with both camera jitter and sudden illumination changes caused by the environment and the camera auto exposure.

10.
Sensors (Basel) ; 18(4)2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-29614049

RESUMO

Prediction systems present some challenges on two fronts: the relation between video quality and observed session features and on the other hand, dynamics changes on the video quality. Software Defined Networks (SDN) is a new concept of network architecture that provides the separation of control plane (controller) and data plane (switches) in network devices. Due to the existence of the southbound interface, it is possible to deploy monitoring tools to obtain the network status and retrieve a statistics collection. Therefore, achieving the most accurate statistics depends on a strategy of monitoring and information requests of network devices. In this paper, we propose an enhanced algorithm for requesting statistics to measure the traffic flow in SDN networks. Such an algorithm is based on grouping network switches in clusters focusing on their number of ports to apply different monitoring techniques. Such grouping occurs by avoiding monitoring queries in network switches with common characteristics and then, by omitting redundant information. In this way, the present proposal decreases the number of monitoring queries to switches, improving the network traffic and preventing the switching overload. We have tested our optimization in a video streaming simulation using different types of videos. The experiments and comparison with traditional monitoring techniques demonstrate the feasibility of our proposal maintaining similar values decreasing the number of queries to the switches.

11.
Sensors (Basel) ; 18(9)2018 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-30149640

RESUMO

Existence of mobile devices with high performance cameras and powerful image processing applications eases the alteration of digital images for malicious purposes. This work presents a new approach to detect digital image tamper detection technique based on CFA artifacts arising from the differences in the distribution of acquired and interpolated pixels. The experimental evidence supports the capabilities of the proposed method for detecting a broad range of manipulations, e.g., copy-move, resizing, rotation, filtering and colorization. This technique exhibits tampered areas by computing the probability of each pixel of being interpolated and then applying the DCT on small blocks of the probability map. The value of the coefficient for the highest frequency on each block is used to decide whether the analyzed region has been tampered or not. The results shown here were obtained from tests made on a publicly available dataset of tampered images for forensic analysis. Affected zones are clearly highlighted if the method detects CFA inconsistencies. The analysis can be considered successful if the modified zone, or an important part of it, is accurately detected. By analizing a publicly available dataset with images modified with different methods we reach an 86% of accuracy, which provides a good result for a method that does not require previous training.

12.
Sensors (Basel) ; 18(9)2018 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-30149678

RESUMO

We present a novel technique for source authentication of a packet stream in a network, which intends to give guarantees that a specific network flow really comes from a claimed origin. This mechanism, named packet level authentication (PLA), can be an essential tool for addressing Denial of Service (DoS) attacks. Based on designated verifier signature schemes, our proposal is an appropriate and unprecedented solution applying digital signatures for DoS prevention. Our scheme does not rely on an expensive public-key infrastructure and makes use of light cryptography machinery that is suitable in the context of the Internet of Things (IoT). We analyze our proposed scheme as a defense measure considering known DoS attacks and present a formal proof of its resilience face to eventual adversaries. Furthermore, we compare our solution to already existent strategies, highlighting its advantages and drawbacks.

13.
Sensors (Basel) ; 18(5)2018 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-29695066

RESUMO

Researches in Artificial Intelligence (AI) have achieved many important breakthroughs, especially in recent years. In some cases, AI learns alone from scratch and performs human tasks faster and better than humans. With the recent advances in AI, it is natural to wonder whether Artificial Neural Networks will be used to successfully create or break cryptographic algorithms. Bibliographic review shows the main approach to this problem have been addressed throughout complex Neural Networks, but without understanding or proving the security of the generated model. This paper presents an analysis of the security of cryptographic algorithms generated by a new technique called Adversarial Neural Cryptography (ANC). Using the proposed network, we show limitations and directions to improve the current approach of ANC. Training the proposed Artificial Neural Network with the improved model of ANC, we show that artificially intelligent agents can learn the unbreakable One-Time Pad (OTP) algorithm, without human knowledge, to communicate securely through an insecure communication channel. This paper shows in which conditions an AI agent can learn a secure encryption scheme. However, it also shows that, without a stronger adversary, it is more likely to obtain an insecure one.


Assuntos
Comunicação , Algoritmos , Inteligência Artificial
14.
Sensors (Basel) ; 18(10)2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30304849

RESUMO

In the last few years, the world has witnessed a ground-breaking growth in the use of digital images and their applications in the modern society. In addition, image editing applications have downplayed the modification of digital photos and this compromises the authenticity and veracity of a digital image. These applications allow for tampering the content of the image without leaving visible traces. In addition to this, the easiness of distributing information through the Internet has caused society to accept everything it sees as true without questioning its integrity. This paper proposes a digital image authentication technique that combines the analysis of local texture patterns with the discrete wavelet transform and the discrete cosine transform to extract features from each of the blocks of an image. Subsequently, it uses a vector support machine to create a model that allows verification of the authenticity of the image. Experiments were performed with falsified images from public databases widely used in the literature that demonstrate the efficiency of the proposed method.

15.
Sensors (Basel) ; 18(3)2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29498641

RESUMO

Cloud computing is considered an interesting paradigm due to its scalability, availability and virtually unlimited storage capacity. However, it is challenging to organize a cloud storage service (CSS) that is safe from the client point-of-view and to implement this CSS in public clouds since it is not advisable to blindly consider this configuration as fully trustworthy. Ideally, owners of large amounts of data should trust their data to be in the cloud for a long period of time, without the burden of keeping copies of the original data, nor of accessing the whole content for verifications regarding data preservation. Due to these requirements, integrity, availability, privacy and trust are still challenging issues for the adoption of cloud storage services, especially when losing or leaking information can bring significant damage, be it legal or business-related. With such concerns in mind, this paper proposes an architecture for periodically monitoring both the information stored in the cloud and the service provider behavior. The architecture operates with a proposed protocol based on trust and encryption concepts to ensure cloud data integrity without compromising confidentiality and without overloading storage services. Extensive tests and simulations of the proposed architecture and protocol validate their functional behavior and performance.

16.
Entropy (Basel) ; 20(4)2018 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33265316

RESUMO

Nowadays, different protocols coexist in Internet that provides services to users. Unfortunately, control decisions and distributed management make it hard to control networks. These problems result in an inefficient and unpredictable network behaviour. Software Defined Networks (SDN) is a new concept of network architecture. It intends to be more flexible and to simplify the management in networks with respect to traditional architectures. Each of these aspects are possible because of the separation of control plane (controller) and data plane (switches) in network devices. OpenFlow is the most common protocol for SDN networks that provides the communication between control and data planes. Moreover, the advantage of decoupling control and data planes enables a quick evolution of protocols and also its deployment without replacing data plane switches. In this survey, we review the SDN technology and the OpenFlow protocol and their related works. Specifically, we describe some technologies as Wireless Sensor Networks and Wireless Cellular Networks and how SDN can be included within them in order to solve their challenges. We classify different solutions for each technology attending to the problem that is being fixed.

17.
Entropy (Basel) ; 20(5)2018 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33265409

RESUMO

Nowadays, there is a lot of critical information and services hosted on computer systems. The proper access control to these resources is essential to avoid malicious actions that could cause huge losses to home and professional users. The access control systems have evolved from the first password based systems to the modern mechanisms using smart cards, certificates, tokens, biometric systems, etc. However, when designing a system, it is necessary to take into account their particular limitations, such as connectivity, infrastructure or budget. In addition, one of the main objectives must be to ensure the system usability, but this property is usually orthogonal to the security. Thus, the use of password is still common. In this paper, we expose a new password based access control system that aims to improve password security with the minimum impact in the system usability.

18.
Sensors (Basel) ; 17(10)2017 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-29065473

RESUMO

Autonomic self-management is a key challenge for next-generation networks. This paper proposes an automated analysis framework to infer knowledge in 5G networks with the aim to understand the network status and to predict potential situations that might disrupt the network operability. The framework is based on the Endsley situational awareness model, and integrates automated capabilities for metrics discovery, pattern recognition, prediction techniques and rule-based reasoning to infer anomalous situations in the current operational context. Those situations should then be mitigated, either proactive or reactively, by a more complex decision-making process. The framework is driven by a use case methodology, where the network administrator is able to customize the knowledge inference rules and operational parameters. The proposal has also been instantiated to prove its adaptability to a real use case. To this end, a reference network traffic dataset was used to identify suspicious patterns and to predict the behavior of the monitored data volume. The preliminary results suggest a good level of accuracy on the inference of anomalous traffic volumes based on a simple configuration.

19.
Sensors (Basel) ; 17(5)2017 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-28531159

RESUMO

In this work, an ACO routing protocol for mobile ad hoc networks based on AntHocNet is specified. As its predecessor, this new protocol, called AntOR, is hybrid in the sense that it contains elements from both reactive and proactive routing. Specifically, it combines a reactive route setup process with a proactive route maintenance and improvement process. Key aspects of the AntOR protocol are the disjoint-link and disjoint-node routes, separation between the regular pheromone and the virtual pheromone in the diffusion process and the exploration of routes, taking into consideration the number of hops in the best routes. In this work, a family of ACO routing protocols based on AntOR is also specified. These protocols are based on protocol successive refinements. In this work, we also present a parallelized version of AntOR that we call PAntOR. Using programming multiprocessor architectures based on the shared memory protocol, PAntOR allows running tasks in parallel using threads. This parallelization is applicable in the route setup phase, route local repair process and link failure notification. In addition, a variant of PAntOR that consists of having more than one interface, which we call PAntOR-MI (PAntOR-Multiple Interface), is specified. This approach parallelizes the sending of broadcast messages by interface through threads.

20.
Sensors (Basel) ; 17(5)2017 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-28448469

RESUMO

The development of the Internet of Things (IoT) is closely related to a considerable increase in the number and variety of devices connected to the Internet. Sensors have become a regular component of our environment, as well as smart phones and other devices that continuously collect data about our lives even without our intervention. With such connected devices, a broad range of applications has been developed and deployed, including those dealing with massive volumes of data. In this paper, we introduce a Distributed Data Service (DDS) to collect and process data for IoT environments. One central goal of this DDS is to enable multiple and distinct IoT middleware systems to share common data services from a loosely-coupled provider. In this context, we propose a new specification of functionalities for a DDS and the conception of the corresponding techniques for collecting, filtering and storing data conveniently and efficiently in this environment. Another contribution is a data aggregation component that is proposed to support efficient real-time data querying. To validate its data collecting and querying functionalities and performance, the proposed DDS is evaluated in two case studies regarding a simulated smart home system, the first case devoted to evaluating data collection and aggregation when the DDS is interacting with the UIoT middleware, and the second aimed at comparing the DDS data collection with this same functionality implemented within the Kaa middleware.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA