Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Genet Metab ; 142(3): 108511, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38878498

RESUMO

The diagnosis of Mendelian disorders has notably advanced with integration of whole exome and genome sequencing (WES and WGS) in clinical practice. However, challenges in variant interpretation and uncovered variants by WES still leave a substantial percentage of patients undiagnosed. In this context, integrating RNA sequencing (RNA-seq) improves diagnostic workflows, particularly for WES inconclusive cases. Additionally, functional studies are often necessary to elucidate the impact of prioritized variants on gene expression and protein function. Our study focused on three unrelated male patients (P1-P3) with ATP6AP1-CDG (congenital disorder of glycosylation), presenting with intellectual disability and varying degrees of hepatopathy, glycosylation defects, and an initially inconclusive diagnosis through WES. Subsequent RNA-seq was pivotal in identifying the underlying genetic causes in P1 and P2, detecting ATP6AP1 underexpression and aberrant splicing. Molecular studies in fibroblasts confirmed these findings and identified the rare intronic variants c.289-233C > T and c.289-289G > A in P1 and P2, respectively. Trio-WGS also revealed the variant c.289-289G > A in P3, which was a de novo change in both patients. Functional assays expressing the mutant alleles in HAP1 cells demonstrated the pathogenic impact of these variants by reproducing the splicing alterations observed in patients. Our study underscores the role of RNA-seq and WGS in enhancing diagnostic rates for genetic diseases such as CDG, providing new insights into ATP6AP1-CDG molecular bases by identifying the first two deep intronic variants in this X-linked gene. Additionally, our study highlights the need to integrate RNA-seq and WGS, followed by functional validation, in routine diagnostics for a comprehensive evaluation of patients with an unidentified molecular etiology.

2.
Mol Genet Metab ; 142(1): 108363, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452608

RESUMO

Succinic semialdehyde dehydrogenase deficiency (SSADHD) (OMIM #271980) is a rare autosomal recessive metabolic disorder caused by pathogenic variants of ALDH5A1. Deficiency of SSADH results in accumulation of γ-aminobutyric acid (GABA) and other GABA-related metabolites. The clinical phenotype of SSADHD includes a broad spectrum of non-pathognomonic symptoms such as cognitive disabilities, communication and language deficits, movement disorders, epilepsy, sleep disturbances, attention problems, anxiety, and obsessive-compulsive traits. Current treatment options for SSADHD remain supportive, but there are ongoing attempts to develop targeted genetic therapies. This study aimed to create consensus guidelines for the diagnosis and management of SSADHD. Thirty relevant statements were initially addressed by a systematic literature review, resulting in different evidence levels of strength according to the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) criteria. The highest level of evidence (level A), based on randomized controlled trials, was unavailable for any of the statements. Based on cohort studies, Level B evidence was available for 12 (40%) of the statements. Thereupon, through a process following the Delphi Method and directed by the Appraisal of Guidelines for Research and Evaluation (AGREE II) criteria, expert opinion was sought, and members of an SSADHD Consensus Group evaluated all the statements. The group consisted of neurologists, epileptologists, neuropsychologists, neurophysiologists, metabolic disease specialists, clinical and biochemical geneticists, and laboratory scientists affiliated with 19 institutions from 11 countries who have clinical experience with SSADHD patients and have studied the disorder. Representatives from parent groups were also included in the Consensus Group. An analysis of the survey's results yielded 25 (83%) strong and 5 (17%) weak agreement strengths. These first-of-their-kind consensus guidelines intend to consolidate and unify the optimal care that can be provided to individuals with SSADHD.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Deficiências do Desenvolvimento , Succinato-Semialdeído Desidrogenase , Succinato-Semialdeído Desidrogenase/deficiência , Humanos , Succinato-Semialdeído Desidrogenase/genética , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Erros Inatos do Metabolismo dos Aminoácidos/genética , Consenso , Ácido gama-Aminobutírico/metabolismo , Guias de Prática Clínica como Assunto
3.
J Inherit Metab Dis ; 47(3): 447-462, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38499966

RESUMO

The objective of the study is to evaluate the evolving phenotype and genetic spectrum of patients with succinic semialdehyde dehydrogenase deficiency (SSADHD) in long-term follow-up. Longitudinal clinical and biochemical data of 22 pediatric and 9 adult individuals with SSADHD from the patient registry of the International Working Group on Neurotransmitter related Disorders (iNTD) were studied with in silico analyses, pathogenicity scores and molecular modeling of ALDH5A1 variants. Leading initial symptoms, with onset in infancy, were developmental delay and hypotonia. Year of birth and specific initial symptoms influenced the diagnostic delay. Clinical phenotype of 26 individuals (median 12 years, range 1.8-33.4 years) showed a diversifying course in follow-up: 77% behavioral problems, 76% coordination problems, 73% speech disorders, 58% epileptic seizures and 40% movement disorders. After ataxia, dystonia (19%), chorea (11%) and hypokinesia (15%) were the most frequent movement disorders. Involvement of the dentate nucleus in brain imaging was observed together with movement disorders or coordination problems. Short attention span (78.6%) and distractibility (71.4%) were the most frequently behavior traits mentioned by parents while impulsiveness, problems communicating wishes or needs and compulsive behavior were addressed as strongly interfering with family life. Treatment was mainly aimed to control epileptic seizures and psychiatric symptoms. Four new pathogenic variants were identified. In silico scoring system, protein activity and pathogenicity score revealed a high correlation. A genotype/phenotype correlation was not observed, even in siblings. This study presents the diversifying characteristics of disease phenotype during the disease course, highlighting movement disorders, widens the knowledge on the genotypic spectrum of SSADHD and emphasizes a reliable application of in silico approaches.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Fenótipo , Succinato-Semialdeído Desidrogenase , Humanos , Succinato-Semialdeído Desidrogenase/deficiência , Succinato-Semialdeído Desidrogenase/genética , Criança , Masculino , Feminino , Pré-Escolar , Adulto , Erros Inatos do Metabolismo dos Aminoácidos/genética , Lactente , Adolescente , Adulto Jovem , Deficiências do Desenvolvimento/genética , Transtornos dos Movimentos/genética , Mutação , Hipotonia Muscular/genética
4.
J Med Genet ; 60(10): 965-973, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37197784

RESUMO

BACKGROUND: Limb-girdle muscular dystrophies (LGMD) are a heterogeneous group of genetically determined muscle disorders. TRAPPC11-related LGMD is an autosomal-recessive condition characterised by muscle weakness and intellectual disability. METHODS: A clinical and histopathological characterisation of 25 Roma individuals with LGMD R18 caused by the homozygous TRAPPC11 c.1287+5G>A variant is reported. Functional effects of the variant on mitochondrial function were investigated. RESULTS: The c.1287+5G>A variant leads to a phenotype characterised by early onset muscle weakness, movement disorder, intellectual disability and elevated serum creatine kinase, which is similar to other series. As novel clinical findings, we found that microcephaly is almost universal and that infections in the first years of life seem to act as triggers for a psychomotor regression and onset of seizures in several individuals with TRAPPC11 variants, who showed pseudometabolic crises triggered by infections. Our functional studies expanded the role of TRAPPC11 deficiency in mitochondrial function, as a decreased mitochondrial ATP production capacity and alterations in the mitochondrial network architecture were detected. CONCLUSION: We provide a comprehensive phenotypic characterisation of the pathogenic variant TRAPPC11 c.1287+5G>A, which is founder in the Roma population. Our observations indicate that some typical features of golgipathies, such as microcephaly and clinical decompensation associated with infections, are prevalent in individuals with LGMD R18.


Assuntos
Deficiência Intelectual , Microcefalia , Distrofia Muscular do Cíngulo dos Membros , Distrofias Musculares , Roma (Grupo Étnico) , Humanos , Roma (Grupo Étnico)/genética , Fenótipo , Distrofia Muscular do Cíngulo dos Membros/genética , Debilidade Muscular , Proteínas de Transporte Vesicular
5.
Hum Mol Genet ; 29(24): 3859-3871, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33043365

RESUMO

De novo GRIN variants, encoding for the ionotropic glutamate NMDA receptor subunits, have been recently associated with GRIN-related disorders, a group of rare paediatric encephalopathies. Current investigational and clinical efforts are focused to functionally stratify GRIN variants, towards precision therapies of this primary disturbance of glutamatergic transmission that affects neuronal function and brain. In the present study, we aimed to comprehensively delineate the functional outcomes and clinical phenotypes of GRIN protein truncating variants (PTVs)-accounting for ~20% of disease-associated GRIN variants-hypothetically provoking NMDAR hypofunctionality. To tackle this question, we created a comprehensive GRIN PTVs variants database compiling a cohort of nine individuals harbouring GRIN PTVs, together with previously identified variants, to build-up an extensive GRIN PTVs repertoire composed of 293 unique variants. Genotype-phenotype correlation studies were conducted, followed by cell-based assays of selected paradigmatic GRIN PTVs and their functional annotation. Genetic and clinical phenotypes meta-analysis revealed that heterozygous GRIN1, GRIN2C, GRIN2D, GRIN3A and GRIN3B PTVs are non-pathogenic. In contrast, heterozygous GRIN2A and GRIN2B PTVs are associated with specific neurological clinical phenotypes in a subunit- and domain-dependent manner. Mechanistically, cell-based assays showed that paradigmatic pathogenic GRIN2A and GRIN2B PTVs result on a decrease of NMDAR surface expression and NMDAR-mediated currents, ultimately leading to NMDAR functional haploinsufficiency. Overall, these findings contribute to delineate GRIN PTVs genotype-phenotype association and GRIN variants stratification. Functional studies showed that GRIN2A and GRIN2B pathogenic PTVs trigger NMDAR hypofunctionality, and thus accelerate therapeutic decisions for this neurodevelopmental condition.


Assuntos
Variação Genética , Mutação com Perda de Função , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/patologia , Receptores de N-Metil-D-Aspartato/genética , Animais , Estudos de Coortes , Feminino , Estudos de Associação Genética , Humanos , Masculino , Camundongos , Transtornos do Neurodesenvolvimento/genética
6.
Hum Genet ; 142(12): 1755-1776, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37962671

RESUMO

To investigate the genotype-to-protein-to-phenotype correlations of succinic semialdehyde dehydrogenase deficiency (SSADHD), an inherited metabolic disorder of γ-aminobutyric acid catabolism. Bioinformatics and in silico mutagenesis analyses of ALDH5A1 variants were performed to evaluate their impact on protein stability, active site and co-factor binding domains, splicing, and homotetramer formation. Protein abnormalities were then correlated with a validated disease-specific clinical severity score and neurological, neuropsychological, biochemical, neuroimaging, and neurophysiological metrics. A total of 58 individuals (1:1 male/female ratio) were affected by 32 ALDH5A1 pathogenic variants, eight of which were novel. Compared to individuals with single homotetrameric or multiple homo and heterotetrameric proteins, those predicted not to synthesize any functional enzyme protein had significantly lower expression of ALDH5A1 (p = 0.001), worse overall clinical outcomes (p = 0.008) and specifically more severe cognitive deficits (p = 0.01), epilepsy (p = 0.04) and psychiatric morbidity (p = 0.04). Compared to individuals with predictions of having no protein or a protein impaired in catalytic functions, subjects whose proteins were predicted to be impaired in stability, folding, or oligomerization had a better overall clinical outcome (p = 0.02) and adaptive skills (p = 0.04). The quantity and type of enzyme proteins (no protein, single homotetramers, or multiple homo and heterotetramers), as well as their structural and functional impairments (catalytic or stability, folding, or oligomerization), contribute to phenotype severity in SSADHD. These findings are valuable for assessment of disease prognosis and management, including patient selection for gene replacement therapy. Furthermore, they provide a roadmap to determine genotype-to-protein-to-phenotype relationships in other autosomal recessive disorders.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Criança , Humanos , Masculino , Feminino , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Deficiências do Desenvolvimento/genética , Fenótipo , Succinato-Semialdeído Desidrogenase/genética , Succinato-Semialdeído Desidrogenase/metabolismo
7.
J Transl Med ; 21(1): 756, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884937

RESUMO

BACKGROUND: Rett syndrome is a neuropediatric disease occurring due to mutations in MECP2 and characterized by a regression in the neuronal development following a normal postnatal growth, which results in the loss of acquired capabilities such as speech or purposeful usage of hands. While altered neurotransmission and brain development are the center of its pathophysiology, alterations in mitochondrial performance have been previously outlined, shaping it as an attractive target for the disease treatment. METHODS: We have thoroughly described mitochondrial performance in two Rett models, patients' primary fibroblasts and female Mecp2tm1.1Bird-/+ mice brain, discriminating between different brain areas. The characterization was made according to their bioenergetics function, oxidative stress, network dynamics or ultrastructure. Building on that, we have studied the effect of leriglitazone, a PPARγ agonist, in the modulation of mitochondrial performance. For that, we treated Rett female mice with 75 mg/kg/day leriglitazone from weaning until sacrifice at 7 months, studying both the mitochondrial performance changes and their consequences on the mice phenotype. Finally, we studied its effect on neuroinflammation based on the presence of reactive glia by immunohistochemistry and through a cytokine panel. RESULTS: We have described mitochondrial alterations in Rett fibroblasts regarding both shape and bioenergetic functions, as they displayed less interconnected and shorter mitochondria and reduced ATP production along with increased oxidative stress. The bioenergetic alterations were recalled in Rett mice models, being especially significant in cerebellum, already detectable in pre-symptomatic stages. Treatment with leriglitazone recovered the bioenergetic alterations both in Rett fibroblasts and female mice and exerted an anti-inflammatory effect in the latest, resulting in the amelioration of the mice phenotype both in general condition and exploratory activity. CONCLUSIONS: Our studies confirm the mitochondrial dysfunction in Rett syndrome, setting the differences through brain areas and disease stages. Its modulation through leriglitazone is a potential treatment for this disorder, along with other diseases with mitochondrial involvement. This work constitutes the preclinical necessary evidence to lead to a clinical trial.


Assuntos
Síndrome de Rett , Humanos , Feminino , Camundongos , Animais , Síndrome de Rett/tratamento farmacológico , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Mitocôndrias/metabolismo , Encéfalo , Estresse Oxidativo , Modelos Animais de Doenças
8.
Mol Genet Metab ; 139(3): 107624, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37348148

RESUMO

Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare autosomal recessive genetic disorder affecting the biosynthesis of dopamine, a precursor of both norepinephrine and epinephrine, and serotonin. Diagnosis is based on the analysis of CSF or plasma metabolites, AADC activity in plasma and genetic testing for variants in the DDC gene. The exact prevalence of AADC deficiency, the number of patients, and the variant and genotype prevalence are not known. Here, we present the DDC variant (n = 143) and genotype (n = 151) prevalence of 348 patients with AADC deficiency, 121 of whom were previously not reported. In addition, we report 26 new DDC variants, classify them according to the ACMG/AMP/ACGS recommendations for pathogenicity and score them based on the predicted structural effect. The splice variant c.714+4A>T, with a founder effect in Taiwan and China, was the most common variant (allele frequency = 32.4%), and c.[714+4A>T];[714+4A>T] was the most common genotype (genotype frequency = 21.3%). Approximately 90% of genotypes had variants classified as pathogenic or likely pathogenic, while 7% had one VUS allele and 3% had two VUS alleles. Only one benign variant was reported. Homozygous and compound heterozygous genotypes were interpreted in terms of AADC protein and categorized as: i) devoid of full-length AADC, ii) bearing one type of AADC homodimeric variant or iii) producing an AADC protein population composed of two homodimeric and one heterodimeric variant. Based on structural features, a score was attributed for all homodimers, and a tentative prediction was advanced for the heterodimer. Almost all AADC protein variants were pathogenic or likely pathogenic.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Descarboxilases de Aminoácido-L-Aromático , Humanos , Prevalência , Dopamina/metabolismo , Genótipo , Erros Inatos do Metabolismo dos Aminoácidos/epidemiologia , Erros Inatos do Metabolismo dos Aminoácidos/genética , Aminoácidos/genética
9.
Epilepsia ; 64(6): 1516-1526, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36961285

RESUMO

OBJECTIVE: Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a rare inherited metabolic disorder caused by a defect of γ-aminobutyrate (GABA) catabolism. Despite the resultant hyper-GABAergic environment facilitated by the metabolic defect, individuals with this disorder have a paradoxically high prevalence of epilepsy. We aimed to study the characteristics of epilepsy in SSADHD and its concordance with GABA-related metabolites and neurophysiologic markers of cortical excitation. METHODS: Subjects in an international natural history study of SSADHD underwent clinical assessments, electroencephalography, transcranial magnetic stimulation (TMS), magnetic resonance spectroscopy for GABA/N-acetyl aspartate quantification, and plasma GABA-related metabolite measurements. RESULTS: A total of 61 subjects with SSADHD and 42 healthy controls were included in the study. Epilepsy was present in 49% of the SSADHD cohort. Over time, there was an increase in severity in 33% of the subjects with seizures. The presence of seizures was associated with increasing age (p = .001) and lower levels of GABA (p = .002), γ-hydroxybutyrate (GHB; p = .004), and γ-guanidinobutyrate (GBA; p = .003). Seizure severity was associated with increasing age and lower levels of GABA-related metabolites as well as lower TMS-derived resting motor thresholds (p = .04). The cutoff values with the highest discriminative ability to predict seizures were age > 9.2 years (p = .001), GABA < 2.57 µmol·L-1 (p = .002), GHB < 143.6 µmol·L-1 (p = .004), and GBA < .075 µmol·L-1 (p = .007). A prediction model for seizures in SSADHD was comprised of the additive effect of older age and lower plasma GABA, GHB, and GBA (area under the receiver operating characteristic curve of .798, p = .008). SIGNIFICANCE: Epilepsy is highly prevalent in SSADHD, and its onset and severity correlate with an age-related decline in GABA and GABA-related metabolite levels as well as TMS markers of reduced cortical inhibition. The reduction of GABAergic activity in this otherwise hyper-GABAergic disorder demonstrates a concordance between epileptogenesis and compensatory responses. These findings may furthermore inform the timing of molecular interventions for SSADHD.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Epilepsia , Oxibato de Sódio , Humanos , Criança , Erros Inatos do Metabolismo dos Aminoácidos/complicações , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Deficiências do Desenvolvimento , Epilepsia/metabolismo , Ácido gama-Aminobutírico/metabolismo , Aminobutiratos , Convulsões
10.
J Inherit Metab Dis ; 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932875

RESUMO

The study of inborn errors of neurotransmission has been mostly focused on monoamine disorders, GABAergic and glycinergic defects. The study of the glutamatergic synapse using the same approach than classic neurotransmitter disorders is challenging due to the lack of biomarkers in the CSF. A metabolomic approach can provide both insight into their molecular basis and outline novel therapeutic alternatives. We have performed a semi-targeted metabolomic analysis on CSF samples from 25 patients with neurogenetic disorders with an important expression in the glutamatergic synapse and 5 controls. Samples from patients diagnosed with MCP2, CDKL5-, GRINpathies and STXBP1-related encephalopathies were included. We have performed univariate (UVA) and multivariate statistical analysis (MVA), using Wilcoxon rank-sum test, principal component analysis (PCA), and OPLS-DA. By using the results of both analyses, we have identified the metabolites that were significantly altered and that were important in clustering the respective groups. On these, we performed pathway- and network-based analyses to define which metabolic pathways were possibly altered in each pathology. We have observed alterations in the tryptophan and branched-chain amino acid metabolism pathways, which interestingly converge on LAT1 transporter-dependency to cross the blood-brain barrier (BBB). Analysis of the expression of LAT1 transporter in brain samples from a mouse model of Rett syndrome (MECP2) revealed a decrease in the transporter expression, that was already noticeable at pre-symptomatic stages. The study of the glutamatergic synapse from this perspective advances the understanding of their pathophysiology, shining light on an understudied feature as is their metabolic signature.

11.
Clin Genet ; 102(1): 40-55, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35388452

RESUMO

Glucose transporter 1 deficiency syndrome (GLUT1DS) is a neurometabolic disorder caused by haploinsufficiency of the GLUT1 glucose transporter (encoded by SLC2A1) leading to defective glucose transport across the blood-brain barrier. This work describes the genetic analysis of 56 patients with clinical or biochemical GLUT1DS hallmarks. 55.4% of these patients had a pathogenic variant of SLC2A1, and 23.2% had a variant in one of 13 different genes. No pathogenic variant was identified for the remaining patients. Expression analysis of SLC2A1 indicated a reduction in SLC2A1 mRNA in patients with pathogenic variants of this gene, as well as in one patient with a pathogenic variant in SLC9A6, and in three for whom no candidate variant was identified. Thus, the clinical and biochemical hallmarks generally associated with GLUT1DS may be caused by defects in genes other than SLC2A1.


Assuntos
Erros Inatos do Metabolismo dos Carboidratos , Erros Inatos do Metabolismo dos Carboidratos/genética , Testes Genéticos , Transportador de Glucose Tipo 1/genética , Humanos , Proteínas de Transporte de Monossacarídeos/deficiência , Proteínas de Transporte de Monossacarídeos/genética
12.
Neuroradiology ; 64(11): 2179-2190, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35662359

RESUMO

PURPOSE: Inborn errors of neurotransmitters are rare monogenic diseases. In general, conventional neuroimaging is not useful for diagnosis. Nevertheless, advanced neuroimaging techniques could provide novel diagnosis and prognosis biomarkers. We aim to describe cerebral volumetric findings in a group of Spanish patients with neurotransmitter disorders. METHODS: Fifteen 3D T1-weighted brain images from the International Working Group on Neurotransmitter related Disorders Spanish cohort were assessed (eight with monoamine and seven with amino acid disorders). Volumes of cortical and subcortical brain structures were obtained for each patient and then compared with those of two healthy individuals matched by sex and age. RESULTS: Regardless of the underlying disease, patients showed a smaller total cerebral tissue volume, which was apparently associated with clinical severity. A characteristic volumetric deficit pattern, including the right Heschl gyrus and the bilateral occipital gyrus, was identified. In severe cases, a distinctive pattern comprised the middle and posterior portions of the right cingulate, the left superior motor area and the cerebellum. In succinate semialdehyde dehydrogenase deficiency, volumetric affection seems to worsen over life. CONCLUSION: Despite the heterogeneity and limited size of our cohort, we found novel and relevant data. Total volume deficit appears to be a marker of severity, regardless of the specific neurotransmitter disease and irrespective of the information obtained from conventional neuroimaging. Volumetric assessment of individual brain structures could provide a deeper knowledge about pathophysiology, disease severity and specific clinical traits.


Assuntos
Neuroimagem , Succinato-Semialdeído Desidrogenase , Aminoácidos , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Neurotransmissores
13.
Dev Med Child Neurol ; 64(7): 915-923, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35833444

RESUMO

AIM: To study neurotransmitter status in children with early epileptic and developmental and epileptic encephalopathy (DEE) and to explore the clinical response to dopaminergic and serotoninergic therapies in a group of patients. METHOD: Two hundred and five patients (111 males [54.1.%] and 94 females [45.9%], mean age 10 months at the onset of epilepsy [SD 1 year 1 month], range 0-3 year) with epileptic encephalopathy/DEE were recruited, including those with West syndrome, Ohtahara syndrome, early myoclonic encephalopathy, epilepsy of infancy with migrating focal seizures, myoclonic encephalopathy in non-progressive disorders, infantile spasms, Doose syndrome, Lennox-Gastaut syndrome, Landau-Kleffner syndrome, and those unclassified. Cerebrospinal fluid (CSF) neurotransmitter studies and patients' medical records were reviewed. Additionally, we present clinical data of 10 patients with low CSF neurotransmitter levels who received dopaminergic/serotoninergic treatments. RESULTS: Abnormal neurotransmitter values were identified in 68 (33%) patients. 5-Hydroxyindoleacetic acid (5-HIAA) deficit was the most prevalent alteration (91%). Low CSF 5-HIAA levels were significantly higher in 1- to 3-year-old children. A negative significant correlation was found between 5-HIAA levels and epilepsy duration before CSF study (Spearman's ρ=-0.191, p=0.007). Abnormalities in deep grey matter were associated with low levels of CSF homovanillic acid and 5-HIAA. Ten patients with low CSF neurotransmitter levels received dopamine and/or serotonin therapies. Six of them showed initial decrease of seizure frequency and severity and maintained improvement in some neurodevelopmental skills. INTERPRETATION: A considerable number of patients showed neurotransmitter abnormalities. Age at seizure onset and duration of epilepsy before CSF study were the principal factors related to neurotransmitter depletion. Early monoamine supplementation would seem advisable as a neuroprotective strategy. WHAT THIS PAPER ADDS: 5-Hydroxyindoleacetic acid homeostasis is especially vulnerable in patients with epileptic encephalopathy/developmental and epileptic encephalopathy. Age of seizure onset and duration of epilepsy are determinants of neurotransmitter depletion.


Assuntos
Epilepsias Mioclônicas , Epilepsia , Espasmos Infantis , Pré-Escolar , Eletroencefalografia , Epilepsia/terapia , Feminino , Humanos , Ácido Hidroxi-Indolacético/uso terapêutico , Lactente , Masculino , Neurotransmissores , Convulsões , Espasmos Infantis/tratamento farmacológico
14.
Hum Mutat ; 42(1): 8-18, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33252190

RESUMO

Glutamatergic neurotransmission is crucial for brain development, wiring neuronal function, and synaptic plasticity mechanisms. Recent genetic studies showed the existence of autosomal dominant de novo GRIN gene variants associated with GRIN-related disorders (GRDs), a rare pediatric neurological disorder caused by N-methyl- d-aspartate receptor (NMDAR) dysfunction. Notwithstanding, GRIN variants identification is exponentially growing and their clinical, genetic, and functional annotations remain highly fragmented, representing a bottleneck in GRD patient's stratification. To shorten the gap between GRIN variant identification and patient stratification, we present the GRIN database (GRINdb), a publicly available, nonredundant, updated, and curated database gathering all available genetic, functional, and clinical data from more than 4000 GRIN variants. The manually curated GRINdb outputs on a web server, allowing query and retrieval of reported GRIN variants, and thus representing a fast and reliable bioinformatics resource for molecular clinical advice. Furthermore, the comprehensive mapping of GRIN variants' genetic and clinical information along NMDAR structure revealed important differences in GRIN variants' pathogenicity and clinical phenotypes, shedding light on GRIN-specific fingerprints. Overall, the GRINdb and web server is a resource for molecular stratification of GRIN variants, delivering clinical and investigational insights into GRDs. GRINdb is accessible at http://lmc.uab.es/grindb.


Assuntos
Doenças do Sistema Nervoso , Receptores de N-Metil-D-Aspartato , Criança , Biologia Computacional , Humanos , Doenças do Sistema Nervoso/genética , Fenótipo , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/genética
15.
Clin Chem ; 67(8): 1113-1121, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34352085

RESUMO

BACKGROUND: Mitochondrial diseases (MD) are genetic metabolic disorders that impair normal mitochondrial structure or function. The aim of this study was to investigate the status of circulating cell-free mitochondrial DNA (ccfmtDNA) in cerebrospinal fluid (CSF), together with other biomarkers (growth differentiation factor-15 [GDF-15], alanine, and lactate), in a cohort of 25 patients with a molecular diagnosis of MD. METHODS: Measurement of ccfmtDNA was performed by using droplet digital PCR. RESULTS: The mean copy number of ccfmtDNA was approximately 6 times higher in the MD cohort compared to the control group; patients with mitochondrial deletion and depletion syndromes (MDD) had the higher levels. We also detected the presence of both wild-type mtDNA and mtDNA deletions in CSF samples of patients with single deletions. Patients with MDD with single deletions had significantly higher concentrations of GDF-15 in CSF than controls, whereas patients with point mutations in mitochondrial DNA presented no statistically significant differences. Additionally, we found a significant positive correlation between ccfmtDNA levels and GDF-15 concentrations (r = 0.59, P = 0.016). CONCLUSION: CSF ccfmtDNA levels are significantly higher in patients with MD in comparison to controls and, thus, they can be used as a novel biomarker for MD research. Our results could also be valuable to support the clinical outcome assessment of MD patients.


Assuntos
Ácidos Nucleicos Livres , Doenças Mitocondriais , Biomarcadores/líquido cefalorraquidiano , Ácidos Nucleicos Livres/genética , DNA Mitocondrial/genética , Humanos , Mitocôndrias/genética , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética
16.
Mov Disord ; 36(3): 690-703, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33152132

RESUMO

BACKGROUND: Genetic defects of monoamine neurotransmitters are rare neurological diseases amenable to treatment with variable response. They are major causes of early parkinsonism and other spectrum of movement disorders including dopa-responsive dystonia. OBJECTIVES: The objective of this study was to conduct proteomic studies in cerebrospinal fluid (CSF) samples of patients with monoamine defects to detect biomarkers involved in pathophysiology, clinical phenotypes, and treatment response. METHODS: A total of 90 patients from diverse centers of the International Working Group on Neurotransmitter Related Disorders were included in the study (37 untreated before CSF collection, 48 treated and 5 unknown at the collection time). Clinical and molecular metadata were related to the protein abundances in the CSF. RESULTS: Concentrations of 4 proteins were significantly altered, detected by mass spectrometry, and confirmed by immunoassays. First, decreased levels of apolipoprotein D were found in severe cases of aromatic L-amino acid decarboxylase deficiency. Second, low levels of apolipoprotein H were observed in patients with the severe phenotype of tyrosine hydroxylase deficiency, whereas increased concentrations of oligodendrocyte myelin glycoprotein were found in the same subset of patients with tyrosine hydroxylase deficiency. Third, decreased levels of collagen6A3 were observed in treated patients with tetrahydrobiopterin deficiency. CONCLUSION: This study with the largest cohort of patients with monoamine defects studied so far reports the proteomic characterization of CSF and identifies 4 novel biomarkers that bring new insights into the consequences of early dopaminergic deprivation in the developing brain. They open new possibilities to understand their role in the pathophysiology of these disorders, and they may serve as potential predictors of disease severity and therapies. © 2020 International Parkinson and Movement Disorder Society.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Distúrbios Distônicos , Biomarcadores , Humanos , Proteômica , Índice de Gravidade de Doença
17.
Int J Mol Sci ; 22(23)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34884460

RESUMO

BACKGROUND: GRIN-related disorders (GRD), the so-called grinpathies, is a group of rare encephalopathies caused by mutations affecting GRIN genes (mostly GRIN1, GRIN2A and GRIN2B genes), which encode for the GluN subunit of the N-methyl D-aspartate (NMDA) type ionotropic glutamate receptors. A growing number of functional studies indicate that GRIN-encoded GluN1 subunit disturbances can be dichotomically classified into gain- and loss-of-function, although intermediate complex scenarios are often present. METHODS: In this study, we aimed to delineate the structural and functional alterations of GRIN1 disease-associated variants, and their correlations with clinical symptoms in a Spanish cohort of 15 paediatric encephalopathy patients harbouring these variants. RESULTS: Patients harbouring GRIN1 disease-associated variants have been clinically deeply-phenotyped. Further, using computational and in vitro approaches, we identified different critical checkpoints affecting GluN1 biogenesis (protein stability, subunit assembly and surface trafficking) and/or NMDAR biophysical properties, and their association with GRD clinical symptoms. CONCLUSIONS: Our findings show a strong correlation between GRIN1 variants-associated structural and functional outcomes. This structural-functional stratification provides relevant insights of genotype-phenotype association, contributing to future precision medicine of GRIN1-related encephalopathies.


Assuntos
Encefalopatias/patologia , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/genética , Adolescente , Animais , Encefalopatias/genética , Células COS , Criança , Pré-Escolar , Chlorocebus aethiops , Estudos de Coortes , Feminino , Células HEK293 , Humanos , Lactente , Masculino , Modelos Moleculares , Conformação Proteica , Espanha
18.
Neurogenetics ; 21(1): 19-27, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31655921

RESUMO

A 3-year-old girl presented with severe epilepsy in the context of Borrelia infection. After ceftriaxone/lidocaine administration, she showed secondarily generalized focal crises that led to neurological and motor sequelae. Genetic studies identified in the patient two heterozygous POLG mutations (c.2591A>G; p.Asn864Ser and c.3649G>C; p.Ala1217Pro). Through analysis of POLG activity in cultured fibroblasts, we confirmed that the mutations altered the mtDNA turnover. Moreover, patient fibroblasts were more sensitive than controls in the presence of a mitochondrial replication-affecting drug, the antiretroviral azidothymidine. To test if ceftriaxone treatment could worsen the deleterious effect of the patient mutations, toxicity assays were performed. Cell toxicity, without direct effect on mitochondrial respiratory function, was detected at different antibiotic concentrations. The clinical outcome, together with the different in vitro sensitivity to ceftriaxone among patient and control cells, suggested that the mitochondrial disease symptoms were hastened by the infection and were possibly worsened by the pharmacological treatment. This study underscores the benefit of early genetic diagnosis of the patients with mitochondrial diseases, since they may be a target group of patients especially vulnerable to environmental factors.


Assuntos
Infecções por Borrelia/complicações , DNA Polimerase gama/genética , Epilepsia/genética , Doenças Mitocondriais/genética , Mutação , Antibacterianos/efeitos adversos , Infecções por Borrelia/tratamento farmacológico , Ceftriaxona/efeitos adversos , Células Cultivadas , Pré-Escolar , DNA Mitocondrial/genética , Epilepsia/etiologia , Feminino , Humanos , Doenças Mitocondriais/etiologia
19.
Neurobiol Dis ; 145: 105043, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32798727

RESUMO

Rett syndrome (RTT; OMIM#312750) is mainly caused by mutations in the X-linked MECP2 gene (methyl-CpG-binding protein 2 gene; OMIM*300005), which leads to impairments in the brain-derived neurotrophic factor (BDNF) signalling. The boost of BDNF mediated effects would be a significant breakthrough but it has been hampered by the difficulty to administer BDNF to the central nervous system. Adenosine, an endogenous neuromodulator, may accomplish that role since through A2AR it potentiates BDNF synaptic actions in healthy animals. We thus characterized several hallmarks of the adenosinergic and BDNF signalling in RTT and explored whether A2AR activation could boost BDNF actions. For this study, the RTT animal model, the Mecp2 knockout (Mecp2-/y) (B6.129P2 (C)-Mecp2tm1.1Bird/J) mouse was used. Whenever possible, parallel data was also obtained from post-mortem brain samples from one RTT patient. Ex vivo extracellular recordings of field excitatory post-synaptic potentials in CA1 hippocampal area were performed to evaluate synaptic transmission and long-term potentiation (LTP). RT-PCR was used to assess mRNA levels and Western Blot or radioligand binding assays were performed to evaluate protein levels. Changes in cortical and hippocampal adenosine content were assessed by liquid chromatography with diode array detection (LC/DAD). Hippocampal ex vivo experiments revealed that the facilitatory actions of BDNF upon LTP is absent in Mecp2-/y mice and that TrkB full-length (TrkB-FL) receptor levels are significantly decreased. Extracts of the hippocampus and cortex of Mecp2-/y mice revealed less adenosine amount as well as less A2AR protein levels when compared to WT littermates, which may partially explain the deficits in adenosinergic tonus in these animals. Remarkably, the lack of BDNF effect on hippocampal LTP in Mecp2-/y mice was overcome by selective activation of A2AR with CGS21680. Overall, in Mecp2-/y mice there is an impairment on adenosinergic system and BDNF signalling. These findings set the stage for adenosine-based pharmacological therapeutic strategies for RTT, highlighting A2AR as a therapeutic target in this devastating pathology.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Receptor A1 de Adenosina/metabolismo , Receptor A2A de Adenosina/metabolismo , Síndrome de Rett/metabolismo , Transdução de Sinais/fisiologia , Animais , Hipocampo/metabolismo , Proteína 2 de Ligação a Metil-CpG , Camundongos , Camundongos Knockout , Receptor trkB/metabolismo , Síndrome de Rett/genética
20.
Mov Disord ; 35(8): 1357-1368, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32472658

RESUMO

BACKGROUND: Juvenile forms of parkinsonism are rare conditions with onset of bradykinesia, tremor and rigidity before the age of 21 years. These atypical presentations commonly have a genetic aetiology, highlighting important insights into underlying pathophysiology. Genetic defects may affect key proteins of the endocytic pathway and clathrin-mediated endocytosis (CME), as in DNAJC6-related juvenile parkinsonism. OBJECTIVE: To report on a new patient cohort with juvenile-onset DNAJC6 parkinsonism-dystonia and determine the functional consequences on auxilin and dopamine homeostasis. METHODS: Twenty-five children with juvenile parkinsonism were identified from a research cohort of patients with undiagnosed pediatric movement disorders. Molecular genetic investigations included autozygosity mapping studies and whole-exome sequencing. Patient fibroblasts and CSF were analyzed for auxilin, cyclin G-associated kinase and synaptic proteins. RESULTS: We identified 6 patients harboring previously unreported, homozygous nonsense DNAJC6 mutations. All presented with neurodevelopmental delay in infancy, progressive parkinsonism, and neurological regression in childhood. 123 I-FP-CIT SPECT (DaTScan) was performed in 3 patients and demonstrated reduced or absent tracer uptake in the basal ganglia. CSF neurotransmitter analysis revealed an isolated reduction of homovanillic acid. Auxilin levels were significantly reduced in both patient fibroblasts and CSF. Cyclin G-associated kinase levels in CSF were significantly increased, whereas a number of presynaptic dopaminergic proteins were reduced. CONCLUSIONS: DNAJC6 is an emerging cause of recessive juvenile parkinsonism-dystonia. DNAJC6 encodes the cochaperone protein auxilin, involved in CME of synaptic vesicles. The observed dopamine dyshomeostasis in patients is likely to be multifactorial, secondary to auxilin deficiency and/or neurodegeneration. Increased patient CSF cyclin G-associated kinase, in tandem with reduced auxilin levels, suggests a possible compensatory role of cyclin G-associated kinase, as observed in the auxilin knockout mouse. DNAJC6 parkinsonism-dystonia should be considered as a differential diagnosis for pediatric neurotransmitter disorders associated with low homovanillic acid levels. Future research in elucidating disease pathogenesis will aid the development of better treatments for this pharmacoresistant disorder. © 2020 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Distonia , Transtornos Parkinsonianos , Criança , Dopamina , Distonia/diagnóstico por imagem , Distonia/genética , Proteínas de Choque Térmico HSP40/genética , Homeostase , Humanos , Mutação/genética , Transtornos Parkinsonianos/diagnóstico por imagem , Transtornos Parkinsonianos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA