Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Inorg Chem ; 63(23): 10648-10656, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38807360

RESUMO

Bimodal medical imaging based on magnetic resonance imaging (MRI) and computed tomography (CT) is a well-known strategy to increase the diagnostic accuracy. The most recent advances in MRI and CT instrumentation are related to the use of ultra-high magnetic fields (UHF-MRI) and different working voltages (spectral CT), respectively. Such advances require the parallel development of bimodal contrast agents (CAs) that are efficient under new instrumental conditions. In this work, we have synthesized, through a precipitation reaction from a glycerol solution of the precursors, uniform barium dysprosium fluoride nanospheres with a cubic fluorite structure, whose size was found to depend on the Ba/(Ba + Dy) ratio of the starting solution. Moreover, irrespective of the starting Ba/(Ba + Dy) ratio, the experimental Ba/(Ba + Dy) values were always lower than those used in the starting solutions. This result was assigned to lower precipitation kinetics of barium fluoride compared to dysprosium fluoride, as inferred from the detailed analysis of the effect of reaction time on the chemical composition of the precipitates. A sample composed of 34 nm nanospheres with a Ba0.51Dy0.49F2.49 stoichiometry showed a transversal relaxivity (r2) value of 147.11 mM-1·s-1 at 9.4 T and gave a high negative contrast in the phantom image. Likewise, it produced high X-ray attenuation in a large range of working voltages (from 80 to 140 kVp), which can be attributed to the presence of different K-edge values and high Z elements (Ba and Dy) in the nanospheres. Finally, these nanospheres showed negligible cytotoxicity for different biocompatibility tests. Taken together, these results show that the reported nanoparticles are excellent candidates for UHF-MRI/spectral CT bimodal imaging CAs.

2.
Int J Mol Sci ; 25(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38791253

RESUMO

The application of metal-based nanoparticles (mNPs) in cancer therapy and diagnostics (theranostics) has been a hot research topic since the early days of nanotechnology, becoming even more relevant in recent years. However, the clinical translation of this technology has been notably poor, with one of the main reasons being a lack of understanding of the disease and conceptual errors in the design of mNPs. Strikingly, throughout the reported studies to date on in vivo experiments, the concepts of "tumor targeting" and "tumor cell targeting" are often intertwined, particularly in the context of active targeting. These misconceptions may lead to design flaws, resulting in failed theranostic strategies. In the context of mNPs, tumor targeting can be described as the process by which mNPs reach the tumor mass (as a tissue), while tumor cell targeting refers to the specific interaction of mNPs with tumor cells once they have reached the tumor tissue. In this review, we conduct a critical analysis of key challenges that must be addressed for the successful targeting of either tumor tissue or cancer cells within the tumor tissue. Additionally, we explore essential features necessary for the smart design of theranostic mNPs, where 'smart design' refers to the process involving advanced consideration of the physicochemical features of the mNPs, targeting motifs, and physiological barriers that must be overcome for successful tumor targeting and/or tumor cell targeting.


Assuntos
Nanopartículas Metálicas , Neoplasias , Nanomedicina Teranóstica , Humanos , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Neoplasias/diagnóstico , Neoplasias/patologia , Nanomedicina Teranóstica/métodos , Animais , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos
3.
J Proteome Res ; 22(3): 743-757, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36720471

RESUMO

The progressive forms of multiple sclerosis (MS) primary progressive MS (PPMS) and secondary progressive MS (SPMS) are clinically distinguished by the rate at which symptoms worsen. Little is however known about the pathological mechanisms underlying the differential rate of accumulation of pathological changes. In this study, 1H NMR spectroscopy was used to measure low-molecular-weight metabolites in paired cerebrospinal fluid (CSF) and serum of PPMS, SPMS, and control patients, as well as to determine lipoproteins and glycoproteins in serum samples. Additionally, neurodegenerative and inflammatory markers, neurofilament light (NFL) and chitinase-3-like protein 1 (CHI3L1), and the concentration of seven metal elements, Mg, Mn, Cu, Fe, Pb, Zn, and Ca, were also determined in both CSF and serum. The results indicate that the pathological changes associated with progressive MS are mainly localized in the central nervous system (CNS). More so, PPMS and SPMS patients with comparable disability status are pathologically similar in relation to neurodegeneration, neuroinflammation, and some metabolites that distinguish them from controls. However, the rapid progression of PPMS from the onset may be driven by a combination of neurotoxicity induced by heavy metals coupled with diminished CNS antioxidative capacity associated with differential intrathecal ascorbate retention and imbalance of Mg and Cu.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Humanos , Esclerose Múltipla Crônica Progressiva/líquido cefalorraquidiano , Esclerose Múltipla/líquido cefalorraquidiano , Ácido Ascórbico , Sistema Nervoso Central , Metais , Biomarcadores/líquido cefalorraquidiano
4.
Nanomedicine ; 52: 102695, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37394106

RESUMO

Chitosan-functionalized magnetite/poly(ε-caprolactone) nanoparticles were formulated by interfacial polymer disposition plus coacervation, and loaded with gemcitabine. That (core/shell)/shell nanostructure was confirmed by electron microscopy, elemental analysis, electrophoretic, and Fourier transform infrared characterizations. A short-term stability study proved the protection against particle aggregation provided by the chitosan shell. Superparamagnetic properties of the nanoparticles were characterized in vitro, while the definition of the longitudinal and transverse relaxivities was an initial indication of their capacity as T2 contrast agents. Safety of the particles was demonstrated in vitro on HFF-1 human fibroblasts, and ex vivo on SCID mice. The nanoparticles demonstrated in vitro pH- and heat-responsive gemcitabine release capabilities. In vivo magnetic resonance imaging studies and Prussian blue visualization of iron deposits in tissue samples defined the improvement in nanoparticle targeting into the tumor when using a magnetic field. This tri-stimuli (magnetite/poly(ε-caprolactone))/chitosan nanostructure could find theranostic applications (biomedical imaging & chemotherapy) against tumors.


Assuntos
Quitosana , Nanopartículas de Magnetita , Nanopartículas , Neoplasias , Camundongos , Animais , Humanos , Óxido Ferroso-Férrico/uso terapêutico , Quitosana/uso terapêutico , Medicina de Precisão , Camundongos SCID , Nanopartículas de Magnetita/química , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Gencitabina , Imageamento por Ressonância Magnética/métodos
5.
Soft Matter ; 17(46): 10580, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34806102

RESUMO

Correction for 'Clickable iron oxide NPs based on catechol derived ligands: synthesis and characterization' by Esther Pozo-Torres et al., Soft Matter, 2020, 16, 3257-3266, DOI: 10.1039/C9SM02512J.

6.
Int J Mol Sci ; 23(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35008673

RESUMO

Exogenous neuroprotective protein neuroglobin (Ngb) cannot cross the blood-brain barrier. To overcome this difficulty, we synthesized hyaluronate nanoparticles (NPs), able to deliver Ngb into the brain in an animal model of stroke (MCAO). These NPs effectively reached neurons, and were microscopically identified after 24 h of reperfusion. Compared to MCAO non-treated animals, those treated with Ngb-NPs showed survival rates up to 50% higher, and better neurological scores. Tissue damage improved with the treatment, but no changes in the infarct volume or in the oxidative/nitrosative values were detected. A proteomics approach (p-value < 0.02; fold change = 0.05) in the infarcted areas showed a total of 219 proteins that significantly changed their expression after stroke and treatment with Ngb-NPs. Of special interest, are proteins such as FBXO7 and NTRK2, which were downexpressed in stroke, but overexpressed after treatment with Ngb-NPs; and ATX2L, which was overexpressed only under the effect of Ngb. Interestingly, the proteins affected by the treatment with Ngb were involved in mitochondrial function and cell death, endocytosis, protein metabolism, cytoskeletal remodeling, or synaptic function, and in regenerative processes, such as dendritogenesis, neuritogenesis, or sinaptogenesis. Consequently, our pharmaceutical preparation may open new therapeutic scopes for stroke and possibly for other neurodegenerative pathologies.


Assuntos
Nanopartículas/química , Neuroglobina/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Acidente Vascular Cerebral/terapia , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/patologia , Infarto Encefálico/patologia , Endocitose/efeitos dos fármacos , Ontologia Genética , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/patologia , Imageamento por Ressonância Magnética , Masculino , Neuroglobina/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Estresse Nitrosativo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Análise de Componente Principal , Proteômica , Ratos Wistar , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/patologia , Análise de Sobrevida , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
7.
Soft Matter ; 16(13): 3257-3266, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32163076

RESUMO

Clickable magnetic nanoparticles have attracted great attention as potential nanoplatforms for biomedical applications because of the high functionalization efficiency of their surfaces with biomolecules, which facilitates their bio-compatibilization. However, the design and synthesis of clickable NPs is still challenging because of the complexity of the chemistry on the magnetic NP surface, thus robust methods that improve the ligand synthesis and the transfer of magnetic NPs in physiological media being in high-demand. In this work, we developed a versatile and enhanced synthetic route to fabricate potentially clickable IONPs of interest in nanomedicine. Catechol anchor ligands with different stereo-electronic features were synthetized from a hetero bi-functional PEG spacer backbone. The resulting catechol ligands transferred in good yields and high stability to magnetic NPs by an improved energetic ligand exchange method that combines sonication and high temperature. The azido functionalized IONPs exhibited excellent characteristics as T2 MRI contrast agents with low cytotoxicity, making these clickable magnetic NPs promising precursors for nanomedicines.


Assuntos
Catecóis/química , Química Click , Compostos Férricos/química , Nanopartículas Metálicas/química , Catecóis/síntese química , Ligantes
8.
J Proteome Res ; 17(9): 2953-2962, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30129764

RESUMO

We used 1H, 13C HRMAS and genomic analysis to investigate regionally the transition from oxidative to glycolytic phenotype and its relationship with altered gene expression in adjacent biopsies through the brain of rats bearing C6 gliomas. Tumor-bearing animals were anesthetized and infused with a solution of [1-13C]-glucose, and small adjacent biopsies were obtained spanning transversally from the contralateral hemisphere (regions I and II), the right and left peritumoral areas (regions III and V, respectively), and the tumor core (region IV). These biopsies were analyzed by 1H, 13C HRMAS and by quantitative gene expression techniques. Glycolytic metabolism, as reflected by the [3-13C]-lactate content, increased clearly from regions I to IV, recovering partially to physiological levels in region V. In contrast, oxidative metabolism, as reflected by the [4-13C]-glutamate labeling, decreased in regions I-IV, recovering partially in region V. This metabolic shift from normal to malignant metabolic phenotype paralleled changes in the expression of HIF1α, HIF2α, HIF3α genes, downstream transporters, and regulatory glycolytic, oxidative, and anaplerotic genes in the same regions. Together, our results indicate that genetic and metabolic alterations occurring in the brain of rats bearing C6 gliomas colocalize in situ and the profile of genetic alterations in every region can be inferred from the metabolomic profiles observed in situ by multinuclear HRMAS.


Assuntos
Neoplasias Encefálicas/genética , Reprogramação Celular , Glioma/genética , Glicólise/genética , Fosforilação Oxidativa , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biópsia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Isótopos de Carbono , Núcleo Caudado/diagnóstico por imagem , Núcleo Caudado/metabolismo , Núcleo Caudado/patologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glioma/diagnóstico por imagem , Glioma/metabolismo , Glioma/patologia , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ácido Láctico/metabolismo , Imageamento por Ressonância Magnética/métodos , Transplante de Neoplasias , Ratos , Ratos Wistar , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transplante Heterólogo
9.
Biomacromolecules ; 18(5): 1617-1623, 2017 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-28368576

RESUMO

pH-responsive nanogels (NGs) were used to prepare high-efficiency magnetic resonance imaging dual T1/T2 contrast agents for pH imaging. The polymeric NG matrix acts as a strong polydentate ligand that chelates the Mn cations in its inner cavity generating a hybrid NG structure. The Mn chelate NG is sensitive to pH changes, such that protonation induces a change of the polymer hydration state and consequent swelling. The swollen nanogel allows water molecules to enter and interact with the Mn chelate, shortening the relaxation time (switch ON) and giving rise to positive or negative contrast on T1- or T2-weighted magnetic resonance images.


Assuntos
Meios de Contraste/química , Géis/química , Imageamento por Ressonância Magnética/métodos , Manganês/química , Nanoestruturas/química , Animais , Linhagem Celular Tumoral , Meios de Contraste/toxicidade , Géis/toxicidade , Concentração de Íons de Hidrogênio , Nanoestruturas/toxicidade , Neuroglia/efeitos dos fármacos , Ratos
10.
Nanomedicine ; 12(5): 1253-62, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26949164

RESUMO

Since pioneering work in the early 60s on the development of enzyme electrodes the field of sensors has evolved to different sophisticated technological platforms. Still, for biomedical applications, there are key requirements to meet in order to get fast, low-cost, real-time data acquisition, multiplexed and automatic biosensors. Nano-based sensors are one of the most promising healthcare applications of nanotechnology, and prone to be one of the first to become a reality. From all nanosensors strategies developed, Magnetic Relaxation Switches (MRSw) assays combine several features which are attractive for nanomedical applications such as safe biocompatibility of magnetic nanoparticles, increased sensitivity/specificity measurements, possibility to detect analytes in opaque samples (unresponsive to light-based interferences) and the use of homogeneous setting assay. This review aims at presenting the ongoing progress of MRSw technology and its most important applications in clinical medicine.


Assuntos
Técnicas Biossensoriais , Magnetismo , Nanomedicina , Nanopartículas , Humanos , Nanotecnologia
11.
Neuropathol Appl Neurobiol ; 40(7): 911-32, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24707814

RESUMO

AIMS: Here, we tested the hypothesis that glial responses via the production of cytokines such as transforming growth factor-beta 1 (TGFß1) and tumour necrosis factor alpha (TNFα), which play important roles in neurodegenerative diseases, are correlated with the severity of congenital hydrocephalus in the hyh mouse model. We also searched for evidence of this association in human cases of primary hydrocephalus. METHODS: Hyh mice, which exhibit either severe or compensated long-lasting forms of hydrocephalus, were examined and compared with wild-type mice. TGFß1, TNFα and TNFαR1 mRNA levels were quantified using real-time PCR. TNFα and TNFαR1 were immunolocalized in the brain tissues of hyh mice and four hydrocephalic human foetuses relative to astroglial and microglial reactions. RESULTS: The TGFß1 mRNA levels were not significantly different between hyh mice exhibiting severe or compensated hydrocephalus and normal mice. In contrast, severely hydrocephalic mice exhibited four- and two-fold increases in the mean levels of TNFα and TNFαR1, respectively, compared with normal mice. In the hyh mouse, TNFα and TNFαR1 immunoreactivity was preferentially detected in astrocytes that form a particular periventricular reaction characteristic of hydrocephalus. However, these proteins were rarely detected in microglia, which did not appear to be activated. TNFα immunoreactivity was also detected in the glial reaction in the small group of human foetuses exhibiting hydrocephalus that were examined. CONCLUSIONS: In the hyh mouse model of congenital hydrocephalus, TNFα and TNFαR1 appear to be associated with the severity of the disease, probably mediating the astrocyte reaction, neurodegenerative processes and ischaemia.


Assuntos
Encéfalo/metabolismo , Hidrocefalia/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Astrócitos/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Feto , Humanos , Hidrocefalia/patologia , Masculino , Camundongos , Microglia/metabolismo , RNA Mensageiro/metabolismo , Índice de Gravidade de Doença
12.
Adv Healthc Mater ; 13(12): e2304044, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38303644

RESUMO

Iron Oxide Nanoparticles (IONPs) hold the potential to exert significant influence on fighting cancer through their theranostics capabilities as contrast agents (CAs) for magnetic resonance imaging (MRI) and as mediators for magnetic hyperthermia (MH). In addition, these capabilities can be improved by doping IONPs with other elements. In this work, the synthesis and characterization of single-core and alloy ZnFe novel magnetic nanoparticles (MNPs), with improved magnetic properties and more efficient magnetic-to-heat conversion, are reported. Remarkably, the results challenge classical nucleation and growth theories, which cannot fully predict the final size/shape of these nanoparticles and, consequently, their magnetic properties, implying the need for further studies to better understand the nanomagnetism phenomenon. On the other hand, leveraging the enhanced properties of these new NPs, successful tumor therapy by MH is achieved following their intravenous administration and tumor accumulation via the enhanced permeability and retention (EPR) effect. Notably, these results are obtained using a single low dose of MNPs and a single exposure to clinically suitable alternating magnetic fields (AMF). Therefore, as far as the authors are aware, for the first time, the successful application of intravenously administered MNPs for MRI-tracked MH tumor therapy in passively targeted tumor xenografts using clinically suitable conditions is demonstrated.


Assuntos
Hipertermia Induzida , Imageamento por Ressonância Magnética , Hipertermia Induzida/métodos , Imageamento por Ressonância Magnética/métodos , Animais , Camundongos , Humanos , Linhagem Celular Tumoral , Zinco/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Meios de Contraste/química , Nanopartículas de Magnetita/química , Ferro/química
13.
ACS Nano ; 17(24): 24961-24971, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38048481

RESUMO

Anisotropic hybrid nanostructures stand out as promising therapeutic agents in photothermal conversion-based treatments. Accordingly, understanding local heat generation mediated by light-to-heat conversion of absorbing multicomponent nanoparticles at the single-particle level has forthwith become a subject of broad and current interest. Nonetheless, evaluating reliable temperature profiles around a single trapped nanoparticle is challenging from all of the experimental, computational, and fundamental viewpoints. Committed to filling this gap, the heat generation of an anisotropic hybrid nanostructure is explored by means of two different experimental approaches from which the local temperature is measured in a direct or indirect way, all in the context of hot Brownian motion theory. The results were compared with analytical results supported by the numerical computation of the wavelength-dependent absorption efficiencies in the discrete dipole approximation for scattering calculations, which has been extended to inhomogeneous nanostructures. Overall, we provide a consistent and comprehensive view of the heat generation in optical traps of highly absorbing particles from the viewpoint of the hot Brownian motion theory.

14.
J Mater Chem B ; 11(46): 11110-11120, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37947078

RESUMO

Superparamagnetic iron oxide nanoparticles have hogged the limelight in different fields of nanotechnology. Surprisingly, notwithstanding the prominent role played as agents in magnetic hyperthermia treatments, the effects of nanoparticle size and shape on the magnetic hyperthermia performance have not been entirely elucidated yet. Here, spherical or cubical magnetic nanoparticles synthesized by a thermal decomposition method with the same magnetic and hyperthermia properties are evaluated. Interestingly, spherical nanoparticles displayed significantly higher magnetic relaxivity than cubic nanoparticles; however, comparable differences were not observed in specific absorption rate (SAR), pointing out the need for additional research to better understand the connection between these two parameters. Additionally, the as-synthetized spherical nanoparticles showed negligible cytotoxicity and, therefore, were tested in vivo in tumor-bearing mice. Following intratumoral administration of these spherical nanoparticles and a single exposure to alternating magnetic fields (AMF) closely mimicking clinical conditions, a significant delay in tumor growth was observed. Although further in vivo experiments are warranted to optimize the magnetic hyperthermia conditions, our findings support the great potential of these nanoparticles as magnetic hyperthermia mediators for tumor therapy.


Assuntos
Hipertermia Induzida , Neoplasias , Camundongos , Animais , Hipertermia Induzida/métodos , Campos Magnéticos , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Nanopartículas Magnéticas de Óxido de Ferro , Imageamento por Ressonância Magnética
15.
Commun Biol ; 6(1): 1084, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880317

RESUMO

Dimethyl fumarate is an ester from the Krebs cycle intermediate fumarate. This drug is approved and currently used for the treatment of psoriasis and multiple sclerosis, and its anti-angiogenic activity was reported some years ago. Due to the current clinical relevance of this compound and the recently manifested importance of endothelial cell metabolism on the angiogenic switch, we wanted to elucidate whether dimethyl fumarate has an effect on energetic metabolism of endothelial cells. Different experimental approximations were performed in endothelial cells, including proteomics, isotope tracing and metabolomics experimental approaches, in this work we studied the possible role of dimethyl fumarate in endothelial cell energetic metabolism. We demonstrate for the first time that dimethyl fumarate promotes glycolysis and diminishes cell respiration in endothelial cells, which could be a consequence of a down-regulation of serine and glycine synthesis through inhibition of PHGDH activity in these cells. Dimethyl fumarate alters the energetic metabolism of endothelial cells in vitro and in vivo through an unknown mechanism, which could be the cause or the consequence of its pharmacological activity. This new discovery on the targets of this compound could open a new field of study regarding the mechanism of action of dimethyl fumarate.


Assuntos
Fumarato de Dimetilo , Esclerose Múltipla , Humanos , Fumarato de Dimetilo/farmacologia , Fumarato de Dimetilo/uso terapêutico , Células Endoteliais/metabolismo , Fumaratos/farmacologia , Fumaratos/uso terapêutico , Regulação para Baixo
16.
Eur J Med Chem ; 243: 114730, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36088758

RESUMO

The stereoselective addition of ethyl acetate enolate to the C═N bond of N-tert-butylsulfinylimines has been investigated in depth. A significant effect of the LHMDS amount and the N-sulfinylimine nature on the stereoselectivity of the process was observed. Conditions were found where sulfinylimines of differently substituted salicylaldehydes derivatives, ethyl acetate, and LHMDS afforded the corresponding addition products as a single diastereomer in good yields. The developed protocol was successfully applied to the first stereoselective synthesis of differently substituted 4-amino-3,4-dihydrocoumarin derivatives. Computational models confirmed the prominent role of the ortho aryl substituent in the stereoselectivity of the process. A significant and selective cytotoxic activity against Glioblastoma Multiforme (GBM) cancer line has been determined for the noncyclic hydroxy ester derivative.


Assuntos
Antineoplásicos , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Estereoisomerismo , Ésteres/farmacologia , Ésteres/química , Antineoplásicos/farmacologia
17.
J Mater Chem B ; 9(24): 4963-4980, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34114575

RESUMO

(Maghemite/poly(d,l-lactide-co-glycolide))/chitosan (core/shell)/shell nanoparticles have been prepared reproducibly by nanoprecipitation solvent evaporation plus coacervation (production performance ≈ 45%, average size ≈ 325 nm). Transmission electron microscopy, energy dispersive X-ray spectroscopy, electrophoretic determinations, and X-ray diffraction patterns demonstrated the satisfactory embedment of iron oxide nanocores within the solid polymer matrix and the formation of an external shell of chitosan in the nanostructure. The adequate magnetic responsiveness of the nanocomposites was characterized in vitro by hysteresis cycle determinations and by visualization of the nanosystem under the influence of a 0.4 T permanent magnet. Safety and biocompatibility of the (core/shell)/shell particles were based on in vitro haemocompatibility studies and cytotoxicity tests against HFF-1 human foreskin fibroblasts and on ex vivo toxicity assessments on tissue samples from Balb/c mice. Transversal relaxivities, determined in vitro at a low magnetic field of 1.44 T, demonstrated their capability as T2 contrast agents for magnetic resonance imaging, being comparable to that of some iron oxide-based contrast agents. Heating properties were evaluated in a high frequency alternating electromagnetic gradient: a constant maximum temperature of ≈46 °C was generated within ≈50 min, while antitumour hyperthermia tests on T-84 colonic adenocarcinoma cells proved the relevant decrease in cell viability (to ≈ 39%) when treated with the nanosystem under the influence of that electromagnetic field. Finally, in vivo magnetic resonance imaging studies and ex vivo histology determinations of iron deposits postulated the efficacy of chitosan to provide long-circulating capabilities to the nanocomposites, retarding nanoparticle recognition by the mononuclear phagocyte system. To our knowledge, this is the first study describing such a type of biocompatible and long-circulating nanoplatform with promising theranostic applications (biomedical imaging and hyperthermia) against cancer.


Assuntos
Quitosana/química , Engenharia , Hipertermia Induzida , Nanopartículas de Magnetita/química , Nanocompostos/química , Neoplasias/tratamento farmacológico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Nanocompostos/uso terapêutico
18.
Sci Rep ; 11(1): 14422, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34257400

RESUMO

Preeclampsia (PE) and fetal growth restriction (FGR) are both placenta-mediated disorders with unclear pathogenesis. Metabolomics of maternal and fetal pairs might help in understanding these disorders. We recruited prospectively pregnancies with normotensive FGR, PE without FGR, PE + FGR and uncomplicated pregnancies as controls. Nuclear magnetic resonance metabolomics were applied on plasma samples collected at delivery. Advanced lipoprotein, glycoprotein and choline profiling was performed using the Liposcale test. The software package Dolphin was used to quantify 24 low-molecular-weight metabolites. Statistical analysis comprised the comparison between each group of complicated pregnancies versus controls, considering 5% false discovery rate correction. Lipid profiles were altered in accordance with the clinical presentation of these disorders. Specifically, PE mothers and FGR fetuses (with or without FGR or PE, respectively) exhibited a pro-atherogenic and pro-inflammatory profile, with higher concentrations of triglycerides, remnant cholesterol (VLDL, IDL) and Glc/GalNAc-linked and lipid-associated glycoproteins compared to controls. Low-molecular-weight metabolites were extensively disturbed in preeclamptic mothers, with or without FGR. Growth restricted fetuses in the presence of PE showed changes in low-molecular-weight metabolites similar to their mothers (increased creatine and creatinine), while normotensive FGR fetuses presented scarce differences, consistent with undernutrition (lower isoleucine). Further research is warranted to clarify maternal and fetal adaptations to PE and FGR.


Assuntos
Retardo do Crescimento Fetal , Adulto , Feminino , Feto , Humanos , Metabolômica , Pré-Eclâmpsia , Gravidez
19.
Pharmaceutics ; 13(3)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804636

RESUMO

In this study, we report the synthesis of gold-coated iron oxide nanoparticles capped with polyvinylpyrrolidone (Fe@Au NPs). The as-synthesized nanoparticles (NPs) exhibited good stability in aqueous media and excellent features as contrast agents (CA) for both magnetic resonance imaging (MRI) and X-ray computed tomography (CT). Additionally, due to the presence of the local surface plasmon resonances of gold, the NPs showed exploitable "light-to-heat" conversion ability in the near-infrared (NIR) region, a key attribute for effective photothermal therapies (PTT). In vitro experiments revealed biocompatibility as well as excellent efficiency in killing glioblastoma cells via PTT. The in vivo nontoxicity of the NPs was demonstrated using zebrafish embryos as an intermediate step between cells and rodent models. To warrant that an effective therapeutic dose was achieved inside the tumor, both intratumoral and intravenous routes were screened in rodent models by MRI and CT. The pharmacokinetics and biodistribution confirmed the multimodal imaging CA capabilities of the Fe@AuNPs and revealed constraints of the intravenous route for tumor targeting, dictating intratumoral administration for therapeutic applications. Finally, Fe@Au NPs were successfully used for an in vivo proof of concept of imaging-guided focused PTT against glioblastoma multiforme in a mouse model.

20.
Top Curr Chem (Cham) ; 378(3): 40, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32382832

RESUMO

Iron oxide nanoparticles (IONPs) have emerged as a promising alternative to conventional contrast agents (CAs) for magnetic resonance imaging (MRI). They have been extensively investigated as CAs due to their high biocompatibility and excellent magnetic properties. Furthermore, the ease of functionalization of their surfaces with different types of ligands (antibodies, peptides, sugars, etc.) opens up the possibility of carrying out molecular MRI. Thus, IONPs functionalized with epithelial growth factor receptor antibodies, short peptides, like RGD, or aptamers, among others, have been proposed for the diagnosis of various types of cancer, including breast, stomach, colon, kidney, liver or brain cancer. In addition to cancer diagnosis, different types of IONPs have been developed for other applications, such as the detection of brain inflammation or the early diagnosis of thrombosis. This review addresses key aspects in the development of IONPs for MRI applications, namely, synthesis of the inorganic core, functionalization processes to make IONPs biocompatible and also to target them to specific tissues or cells, and finally in vivo studies in animal models, with special emphasis on tumor models.


Assuntos
Meios de Contraste/química , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/química , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA