Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(31): 16795-16805, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34323251

RESUMO

Organic/inorganic van der Waals heterojunctions formed by a combination of 2D materials with semiconductor polymer films enable the fabrication of new device architectures that are interesting for electronic and optoelectronic applications. Here, we investigated the charge-transfer dynamics at the interface between 2D layered franckeite (Fr) and two thiophene-based conjugated polymers (PFO-DBT and P3HT) from the resonantly core-excited electron. The unoccupied electronic states of PFO-DBT/Fr and P3HT/Fr heterojunctions were studied using near-edge X-ray absorption fine structure (NEXAFS) and resonant Auger (RAS) synchrotron-based spectroscopies. We found evidence of ultrafast (subfemtosecond charge-transfer times) interfacial electron delocalization pathways from specific electronic states. For the interface between the PFO-DBT polymer and exfoliated franckeite, the most efficient interfacial electron delocalization pathways were found through π*(S-N) and π*(S-C) electronic states corresponding to the benzothiadiazole and thiophene units. On the other hand, for the P3HT polymer, we found that electrons excited to π-π* and S1s-π*(C-C) electronic states of the P3HT polymer are the most affected by the presence of exfoliated franckeite and consequently are the main interfacial electron-transfer pathways in this heterojunction. Our results have important implications in understanding how ultrafast electron delocalization is taking place in organic/inorganic van der Waals heterojunctions, which is relevant information in designing new devices involving these systems.

2.
Chemistry ; 25(69): 15863-15870, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31596001

RESUMO

Sustainability in chemistry heavily relies on heterogeneous catalysis. Enzymes, the main catalyst for biochemical reactions in nature, are an elegant choice to catalyze reactions due to their high activity and selectivity, although they usually suffer from lack of robustness. To overcome this drawback, enzyme-decorated nanoporous heterogeneous catalysts were developed. Three different approaches for Candida antarctica lipase B (CAL-B) immobilization on a covalent organic framework (PPF-2) were employed: physical adsorption on the surface, covalent attachment of the enzyme in functional groups on the surface and covalent attachment into a linker added post-synthesis. The influence of the immobilization strategy on the enzyme uptake, specific activity, thermal stability, and the possibility of its use through multiple cycles was explored. High specific activities were observed for PPF-2-supported CAL-B in the esterification of oleic acid with ethanol, ranging from 58 to 283 U mg-1 , which was 2.6 to 12.7 times greater than the observed for the commercial Novozyme 435.


Assuntos
Enzimas Imobilizadas/química , Proteínas Fúngicas/química , Lipase/química , Estruturas Metalorgânicas/química , Adsorção , Biocatálise , Candida/enzimologia , Esterificação , Modelos Moleculares , Nanoporos/ultraestrutura , Ácido Oleico/química
3.
Nanotechnology ; 30(47): 475707, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31426043

RESUMO

In this work a simple approach to transform MoS2 from its metallic (1T' to semiconductor 2H) character via gold nanoparticle surface decoration of a MoS2 reduced graphene oxide (rGO) nanocomposite is proposed. The possible mechanism to this phase transformation was investigated using different spectroscopy techniques, and supported by density functional theory theoretical calculations. A mixture of the 1T'- and 2H-MoS2 phases was observed from the Raman and Mo 3d high resolution x-ray photoelectron spectra analysis in the MoS2-rGO nanocomposite. After surface decoration with gold nanoparticles the concentration of the 1T' phase decreases making evident a phase transformation. According to Raman and valence band spectra analyzes, the Au nanoparticles (NPs) induce a p-type doping in MoS2-rGO nanocomposite. We proposed as a main mechanism to the MoS2 phase transformation the electron transfer from Mo 4d xy,xz,yz in 1T' phase to AuNPs conduction band. At the same time, the unoccupied electronic structure was investigated from S K-edge near edge x-ray absorption fine structure spectroscopy. Finally, the electronic coupling between unoccupied electronic states was investigated by the core hole clock approach using resonant Auger spectroscopy, showing that AuNPs affect mainly the MoS2 electronic states close to Fermi level.

4.
Phys Chem Chem Phys ; 21(42): 23521-23532, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31617508

RESUMO

Hybrid van der Waals heterojunctions based on organic polymers and 2D materials have emerged as a promising solution for developing more efficient optoelectronic devices. Herein, we investigated the charge transfer (CT) dynamics at the interface of the poly[3-hexylthiophene-2,5-diyl] (P3HT) organic polymer and a MoS2 monolayer. A global picture of the charge transfer dynamics of a P3HT/MoS2/SiO2 heterojunction was elucidated from photoluminescence (PL) spectroscopy and the fluorescence lifetime decay profile. Rapid interfacial charge transfer between P3HT and MoS2 was indicated by strong PL quenching and a reduction in the average fluorescence lifetime (τav) of the P3HT/MoS2/SiO2 heterojunction. The role of specific electronic states in the interfacial CT process was investigated by applying the core hole clock approach. CT times (τCT) on femtosecond and sub-femtosecond timescales were estimated using the S1s core-hole lifetime as the internal clock. Sub-femtosecond CT was observed for electrons excited to S3pz (0.34 fs) electronic states of MoS2 and to π* (C-C) (0.45 fs) electronic states of P3HT in the P3HT/MoS2/SiO2 heterojunction. These fast bidirectional CT processes result from strong coupling between these two electronic states in the P3HT/MoS2/SiO2 heterostructure. However, the reduction of the τCT values in the heterojunction compared with those of the isolated films shows that interfacial CT from the P3HT species to MoS2 is more efficient. Interfacial CT was not observed for electrons excited to electronic states S3px,y (MoS2) and σ* (S-C) (P3HT). We conclude that the π* (C-C) electronic state of the P3HT species is the main pathway for interfacial ultrafast CT in a P3HT/MoS2/SiO2 heterojunction.

5.
Phys Chem Chem Phys ; 19(44): 29954-29962, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29090284

RESUMO

Two-dimensional van der Waals heterostructures are attractive candidates for optoelectronic nanodevice applications. The charge transport process in these systems has been extensively investigated, however the effect of coupling between specific electronic states on the charge transfer process is not completely established yet. Here, interfacial charge transfer (CT) in the MoS2/graphene/SiO2 heterostructure is investigated from static and dynamic points of view. Static CT in the MoS2-graphene interface was elucidated by an intensity quenching, broadening and a blueshift of the photoluminescence peaks. Atomic and electronic state-specific CT dynamics on a femtosecond timescale are characterized using a core-hole clock approach and using the S1s core-hole lifetime as an internal clock. We demonstrate that the femtosecond electron transfer pathway in the MoS2/SiO2 heterostructure is mainly due to the electronic coupling between S3p-Mo4d states forming the Mo-S covalent bond in the MoS2 layer. For the MoS2/graphene/SiO2 heterostructure, we identify, with the support of density functional calculations, new pathways that arise due to the high density of empty electronic states of the graphene conduction band. The latter makes the transfer process time in the MoS2/graphene/SiO2/Si twice as fast as in the MoS2/SiO2/Si sample. Our results show that ultrafast electron delocalization pathways in van der Waals heterostructures are dependent on the electronic properties of each involved 2D material, creating opportunities to modulate their transport properties.

6.
Nanotechnology ; 27(28): 285401, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27251109

RESUMO

Hydrogen fuels generated by water splitting using a photocatalyst and solar irradiation are currently gaining the strength to diversify the world energy matrix in a green way. CdS quantum dots have revealed a hydrogen generation improvement when added to TiO2 materials under visible-light irradiation. In the present paper, we investigated the performance of TiO2 nanotubes coupled with CdS quantum dots, by a molecular bifunctional linker, on photocatalytic hydrogen generation. TiO2 nanotubes were obtained by anodization of Ti foil, followed by annealing to crystallize the nanotubes into the anatase phase. Afterwards, the samples were sensitized with CdS quantum dots via an in situ hydrothermal route using 3-mercaptopropionic acid as the capping agent. This sensitization technique permits high loading and uniform distribution of CdS quantum dots onto TiO2 nanotubes. The XPS depth profile showed that CdS concentration remains almost unchanged (homogeneous), while the concentration relative to the sulfate anion decreases by more than 80% with respect to the initial value after ∼100 nm in depth. The presence of sulfate anions is due to the oxidation of sulfide and occurs in greater proportion in the material surface. This protection for air oxidation inside the nanotubular matrix seemingly protected the CdS for photocorrosion in sacrificial solution leading to good stability properties proved by long duration, stable photocurrent measurements. The effect of the size and the distribution of sizes of CdS quantum dots attached to TiO2 nanotubes on the photocatalytic hydrogen generation were investigated. The experimental results showed three different behaviors when the reaction time of CdS synthesis was increased in the sensitized samples, i.e. similar, deactivation and activation effects on the hydrogen production with regard to TiO2 nanotubes. The deactivation effect was related to two populations of sizes of CdS, where the population with a shorter band gap acts as a trap for the electrons photogenerated by the population with a larger band gap. Electron transfer from CdS quantum dots to TiO2 semiconductor nanotubes was proven by the results of UPS measurements combined with optical band gap measurements. This property facilitates an improvement of the visible-light hydrogen evolution rate from zero, for TiO2 nanotubes, to approximately 0.3 µmol cm(-2) h(-1) for TiO2 nanotubes sensitized with CdS quantum dots.

7.
Phys Chem Chem Phys ; 17(17): 11244-51, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25836380

RESUMO

Ultrafast charge delocalization dynamics in an internal donor-acceptor copolymer poly(9,9-dioctylfluorenyl-co-bithiophene) (F8T2) and its blend with the fullerene derivative [6,6]-phenyl C61 butyric acid methyl ester (PCBM) was studied by resonant Auger spectroscopy measured around sulfur K-edge using the core-hole clock approach. The effect of thermal annealing on the charge transfer delocalization times (τCT) was also investigated. Two main transitions with S 1s → π* and S 1s → σ*(S-C) character were measured at the S 1s NEXAFS spectra. Poor charge delocalization was observed for as cast polymeric films at photon energies corresponding to the S 1s → π* transition, which may suggest a weak π-electronic coupling due to weak polymer crystallinity and chain stacking. Enhancement in the charge transfer process for photon energies close to the resonance maximum was observed for thermally annealed F8T2 and its blends. Atomic Force Microscopy (AFM) topography for as cast F8T2:PCBM shows a top position of PCBM units relative to the polymer, homogeneously distributed on the film surface. This configuration improves the charge delocalization through S 1s → π* molecular orbitals for the as cast blended film, suggesting a strong π-electronic coupling. A new rearrangement of F8T2:PCBM film was found after thermal annealing, leading to a more efficient electron transfer channel through σ* molecular orbitals.

8.
RSC Adv ; 8(46): 26416-26422, 2018 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35541958

RESUMO

The interfacial electronic structure and charge transfer dynamics of poly-3-hexylthiophene (P3HT) and multi-walled carbon nanotube (Fe-MWCNT) nanocomposites were investigated by near-edge X-ray absorption fine structure (NEXAFS) and resonant Auger (RAS) spectroscopies around the sulfur K-edge. Nanocomposites with 5 wt% (P3HT/Fe-MWCNT-5%) and 10 wt% (P3HT/Fe-MWCNT-10%) of Fe-MWCNT species were prepared and compared with pristine P3HT film. The quantitative NEXAFS analysis shows a strong π-π interchain interaction of the pristine P3HT polymer film, which is reduced by the presence of the Fe-MWCNT. S-KL2,3L2,3 RAS spectra were measured at photon energies corresponding to the main electronic transitions appearing in the S-K edge NEXAFS spectrum. Ultrafast charge transfer times were estimated from the RAS spectra using the core-hole clock approach with the S 1s core-hole lifetime as an internal clock. The π-π interchain charge transfer time increases from 4.7 fs on pristine P3HT polymer to 6.5 fs on the P3HT/Fe-MWCNT-5% nanocomposite. The electronic coupling between P3HT and Fe-MWCNT species occurs mainly through the P3HT π* molecular orbital. The increase of Fe-MWCNT concentration from 5 to 10 wt% reduces the charge transfer rate at the resonance maximum due probably to Fe-MWCNT aggregation, reducing the P3HT and Fe-MWCNT electronic coupling.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 171: 376-382, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27569770

RESUMO

We use X-ray photoelectron spectroscopy (XPS), Near-edge X-ray absorption fine structure (NEXAFS), resonant Auger spectroscopy (RAS), Attenuation Total Reflection Infrared (ATR-IR) and Atomic Force Microscopy (AFM) to study the blend between the copolymer poly[2,7-(9,9-bis(2-ethylhexyl)-dibenzosilole)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole] (PSiF-DBT) and the fullerene derivative PC71BM submitted to different annealing temperatures. Those measurements indicate that there is an incidental anchoring of a fullerene derivative to the Si-bridging atoms of a copolymer induced by thermal annealing of the film. Insights about the physical properties of one possible PSiF-DBT/PC71BM anchored structure are obtained using Density Functional Theory calculations. Since the performance of organic photovoltaic based on polymer-fullerene blends depends on the chemical structure of the blend components, the anchoring effect might affect the photovoltaic properties of those devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA