Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-31526846

RESUMO

The darkedged splitfin (Amarillo fish), Girardinichthys multiradiatus is a vulnerable endemic fish species inhabiting central Mexico's high altitude Upper Lerma Basin, where aquatic hypoxia is exacerbated by low barometric pressures (lower PO2s), large aquatic oxygen changes, poor aquatic systems management and urban, agricultural and industrial pollution. The respiratory physiology of G. multiradiatus under such challenging conditions is unknown - therefore the main goal of the present study was to determine metabolic rates and hypoxia tolerance to elucidate possible physiological adaptations allowing this fish to survive high altitude and increasingly eutrophic conditions. Fish came from two artificial reservoirs - San Elías and Ex Hacienda - considered refuges for this species. Both reservoirs showed high dial PO2 variation, with hypoxic conditions before midday and after 20:00 h, ~4 h of normoxia (15 kPa) from 16:00-20:00, and ~4 h of hyperoxia (16-33 kPa) from 12:00-16:00. Standard metabolic rate at 20 ±â€¯0.5 °C of larvae from Ex Hacienda was significantly higher than those from San Elías, but these differences disappeared in juveniles and adults. Metabolic rate at 20 ±â€¯0.5 °C for adults was 9.8 ±â€¯0.1 SEM µmol O2/g/h. The metabolic scaling exponent for adults was 0.58 for San Elías fish and 0.83 for Ex Hacienda fish, indicating possible ecological effects on this variable. Post-larval fish in Ex Hacienda and all stages in San Elias site showed considerable hypoxia tolerance, with PCrit mean values ranging from 1.9-3.1 kPa, lower than those of many tropical fish at comparable temperatures. Collectively, these data indicate that G. multiradiatus is well adapted for the hypoxia associated with their high-altitude habitat.


Assuntos
Ciprinodontiformes/fisiologia , Brânquias/metabolismo , Hipóxia/fisiopatologia , Consumo de Oxigênio/fisiologia , Adaptação Fisiológica , Altitude , Animais , Metabolismo Basal , México
2.
Proc Natl Acad Sci U S A ; 111(26): E2760-9, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24979809

RESUMO

In Arabidopsis thaliana environmental and endogenous cues promote flowering by activating expression of a small number of integrator genes. The MADS box transcription factor SHORT VEGETATIVE PHASE (SVP) is a critical inhibitor of flowering that directly represses transcription of these genes. However, we show by genetic analysis that the effect of SVP cannot be fully explained by repressing known floral integrator genes. To identify additional SVP functions, we analyzed genome-wide transcriptome data and show that GIBBERELLIN 20 OXIDASE 2, which encodes an enzyme required for biosynthesis of the growth regulator gibberellin (GA), is upregulated in svp mutants. GA is known to promote flowering, and we find that svp mutants contain elevated levels of GA that correlate with GA-related phenotypes such as early flowering and organ elongation. The ga20ox2 mutation suppresses the elevated GA levels and partially suppresses the growth and early flowering phenotypes of svp mutants. In wild-type plants, SVP expression in the shoot apical meristem falls when plants are exposed to photoperiods that induce flowering, and this correlates with increased expression of GA20ox2. Mutations that impair the photoperiodic flowering pathway prevent this downregulation of SVP and the strong increase in expression of GA20ox2. We conclude that SVP delays flowering by repressing GA biosynthesis as well as integrator gene expression and that, in response to inductive photoperiods, repression of SVP contributes to the rise in GA at the shoot apex, promoting rapid induction of flowering.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Flores/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Giberelinas/biossíntese , Oxigenases de Função Mista/genética , Brotos de Planta/fisiologia , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Clorofila/metabolismo , Flores/genética , Hibridização In Situ , Brotos de Planta/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
3.
Plant Physiol ; 160(3): 1581-96, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22942390

RESUMO

procera (pro) is a tall tomato (Solanum lycopersicum) mutant carrying a point mutation in the GRAS region of the gene encoding SlDELLA, a repressor in the gibberellin (GA) signaling pathway. Consistent with the SlDELLA loss of function, pro plants display a GA-constitutive response phenotype, mimicking wild-type plants treated with GA3. The ovaries from both nonemasculated and emasculated pro flowers had very strong parthenocarpic capacity, associated with enhanced growth of preanthesis ovaries due to more and larger cells. pro parthenocarpy is facultative because seeded fruits were obtained by manual pollination. Most pro pistils had exserted stigmas, thus preventing self-pollination, similar to wild-type pistils treated with GA3 or auxins. However, Style2.1, a gene responsible for long styles in noncultivated tomato, may not control the enhanced style elongation of pro pistils, because its expression was not higher in pro styles and did not increase upon GA3 application. Interestingly, a high percentage of pro flowers had meristic alterations, with one additional petal, sepal, stamen, and carpel at each of the four whorls, respectively, thus unveiling a role of SlDELLA in flower organ development. Microarray analysis showed significant changes in the transcriptome of preanthesis pro ovaries compared with the wild type, indicating that the molecular mechanism underlying the parthenocarpic capacity of pro is complex and that it is mainly associated with changes in the expression of genes involved in GA and auxin pathways. Interestingly, it was found that GA activity modulates the expression of cell division and expansion genes and an auxin signaling gene (tomato AUXIN RESPONSE FACTOR7) during fruit-set.


Assuntos
Flores/anatomia & histologia , Frutas/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Mutação/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais , Solanum lycopersicum/crescimento & desenvolvimento , Divisão Celular/efeitos dos fármacos , Divisão Celular/genética , Proliferação de Células/efeitos dos fármacos , Flores/citologia , Flores/efeitos dos fármacos , Flores/genética , Frutas/citologia , Frutas/efeitos dos fármacos , Frutas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Giberelinas/farmacologia , Solanum lycopersicum/citologia , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/genética , Modelos Biológicos , Partenogênese/efeitos dos fármacos , Partenogênese/genética , Fenótipo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Polinização/efeitos dos fármacos , Polinização/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Tempo , Transcriptoma/genética , Triazóis/farmacologia
4.
J Exp Bot ; 63(16): 5803-13, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22945942

RESUMO

Fruit-set and growth in tomato depend on the action of gibberellins (GAs). To evaluate the role of the GA biosynthetic enzyme GA 20-oxidase (GA20ox) in that process, the citrus gene CcGA20ox1 was overexpressed in tomato (Solanum lycopersicum L.) cv Micro-Tom. The transformed plants were taller, had non-serrated leaves, and some flowers displayed a protruding stigma due to a longer style, thus preventing self-pollination, similar to GA(3)-treated plants. Flowering was delayed compared with wild-type (WT) plants. Both yield and number of fruits per plant, some of them seedless, were higher in the transgenic plants. The Brix index value of fruit juice was also higher due to elevated citric acid content, but not glucose or fructose content. When emasculated, 14-30% of ovaries from transgenic flowers developed parthenocarpically, whereas no parthenocarpy was found in emasculated WT flowers. The presence of early-13-hydroxylation and non-13-hydroxylation GA pathways was demonstrated in the shoot and fruit of Micro-Tom, as well as in two tall tomato cultivars (Ailsa Craig and UC-82). The transgenic plants had altered GA profiles containing higher concentrations of GA(4), from the non-13-hydroxylation pathway, which is generally a minor active GA in tomato. The effect of GA(4) application in enhancing stem growth and parthenocarpic fruit development was proportional to dose, with the same activity as GA(1). The results support the contention that GA20ox overexpression diverts GA metabolism from the early-13-hydroxylation pathway to the non-13-hydroxylation pathway. This led to enhanced GA(4) synthesis and higher yield, although the increase in GA(4) content in the ovary was not sufficient to induce full parthenocarpy.


Assuntos
Citrus/enzimologia , Frutas/crescimento & desenvolvimento , Giberelinas/biossíntese , Oxigenases de Função Mista/genética , Plantas Geneticamente Modificadas/metabolismo , Solanum lycopersicum/metabolismo , Vias Biossintéticas , Citrus/genética , Frutas/genética , Frutas/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Oxigenases de Função Mista/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento
5.
Plant Physiol ; 153(2): 851-62, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20388661

RESUMO

Fruit-set in tomato (Solanum lycopersicum) depends on gibberellins and auxins (GAs). Here, we show, using the cv MicroTom, that application of N-1-naphthylphthalamic acid (NPA; an inhibitor of auxin transport) to unpollinated ovaries induced parthenocarpic fruit-set, associated with an increase of indole-3-acetic acid (IAA) content, and that this effect was negated by paclobutrazol (an inhibitor of GA biosynthesis). NPA-induced ovaries contained higher content of GA(1) (an active GA) and transcripts of GA biosynthetic genes (SlCPS, SlGA20ox1, and -2). Interestingly, application of NPA to pollinated ovaries prevented their growth, potentially due to supraoptimal IAA accumulation. Plant decapitation and inhibition of auxin transport by NPA from the apical shoot also induced parthenocarpic fruit growth of unpollinated ovaries. Application of IAA to the severed stump negated the plant decapitation effect, indicating that the apical shoot prevents unpollinated ovary growth through IAA transport. Parthenocarpic fruit growth induced by plant decapitation was associated with high levels of GA(1) and was counteracted by paclobutrazol treatment. Plant decapitation also produced changes in transcript levels of genes encoding enzymes of GA biosynthesis (SlCPS and SlGA20ox1) in the ovary, quite similar to those found in NPA-induced fruits. All these results suggest that auxin can have opposing effects on fruit-set, either inducing (when accumulated in the ovary) or repressing (when transported from the apical shoot) that process, and that GAs act as mediators in both cases. The effect of NPA application and decapitation on fruit-set induction was also observed in MicroTom lines bearing introgressed DWARF and SELF-PRUNING wild-type alleles.


Assuntos
Flores/metabolismo , Frutas/crescimento & desenvolvimento , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Dados de Sequência Molecular , Ftalimidas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Polinização , RNA de Plantas/genética
6.
Plant J ; 56(6): 922-34, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18702668

RESUMO

Tomato (Solanum lycopersicum L.) fruit-set and growth depend on gibberellins (GAs). Auxins, another kind of hormone, can also induce parthenocarpic fruit growth in tomato, although their possible interaction with GAs is unknown. We showed that fruit development induced by the auxins indole-3-acetic acid and 2,4-dichlorophenoxyacetic acid (2,4-D) were significantly reduced by the simultaneous application of inhibitors of GA biosynthesis, and that this effect was reversed by the application of GA(3). This suggested that the effect of auxin was mediated by GA. Parthenocarpic fruits induced by 2,4-D had higher levels of the active GA(1), its precursors and metabolites, than unpollinated non-treated ovaries, but similar levels as those found in pollinated ovaries. Application experiments of radioactive-labelled GAs to unpollinated ovaries showed than 2,4-D altered GA metabolism (both biosynthesis and catabolism) in vivo. Transcript levels of genes encoding copalyldiphosphate synthase (SlCPS), SlGA20ox1, SlGA20ox2 and SlGA20ox3, and SlGA3ox1 were higher in unpollinated ovaries treated with 2,4-D. In contrast, transcript levels of SlGA2ox2 (out of the five SlGA2ox genes known to encode this kind of GA-inactivating enzyme) were lower in ovaries treated with 2,4-D. Our results support the idea that auxins induce fruit-set and growth in tomato, at least partially, by enhancing GA biosynthesis (GA 20-oxidase, GA 3-oxidase and CPS), and probably by decreasing GA inactivation (GA2ox2) activity, thereby leading to higher levels of GA(1). The expression of diverse Aux/indole-3-acetic acid (IAA) and auxin response factors, which may be involved in this effect of auxin, was also altered in 2,4-D-induced ovaries.


Assuntos
Ácido 2,4-Diclorofenoxiacético/farmacologia , Frutas/crescimento & desenvolvimento , Giberelinas/metabolismo , Ácidos Indolacéticos/farmacologia , Solanum lycopersicum/crescimento & desenvolvimento , Frutas/efeitos dos fármacos , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Giberelinas/antagonistas & inibidores , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , RNA de Plantas/metabolismo , Triazóis/farmacologia
7.
Plant Cell Environ ; 31(11): 1620-33, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18684239

RESUMO

The effect of gibberellins (GA) on internode transcriptome was investigated in transgenic Carrizo citrange (Citrus sinensis x Poncirus trifoliata) plants overexpressing endogenous CcGA20ox1 (encoding a GA biosynthetic gene), and in non-transformed explants treated with GA(3), using a citrus cDNA microarray. Substantial modulation of gene expression was found in sense CcGA20ox plants. Extensive up-regulation of genes involved in photosynthesis and carbon utilization, and down-regulation of those involved in protein synthesis and ribosome biogenesis were shown for the first time in plants with higher GA content. Importantly, increase of net photosynthesis in attached leaves was also demonstrated. Expression of other genes belonging to functional groups not reported previously to be regulated by GA (mainly abiotic and biotic stresses, and cuticle biosynthesis), and genes involved in cell division and cell wall architecture were also differentially expressed. Culture of citrus explants for 24 h in GA(3) solution produced much lower changes in the transcriptome compared with CcGA20ox plants (1.6% versus 16%, respectively, of total genes in the microarray), suggesting that most of the changes observed in CcGA20ox plants were a consequence of a long-standing GA effect. Interestingly, genes related to abiotic and biotic stresses were similarly modulated in transgenics and GA(3)-treated explants.


Assuntos
Citrus/metabolismo , Regulação da Expressão Gênica de Plantas , Giberelinas/farmacologia , Fotossíntese/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Citrus/efeitos dos fármacos , Citrus/genética , Perfilação da Expressão Gênica , Genes de Plantas , Oxigenases de Função Mista/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , RNA de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
PLoS One ; 6(9): e24458, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21961036

RESUMO

Some potato species require a short-day (SD) photoperiod for tuberization, a process that is negatively affected by gibberellins (GAs). Here we report the isolation of StGA3ox2, a gene encoding a GA 3-oxidase, whose expression is increased in the aerial parts and is repressed in the stolons after transfer of photoperiod-dependent potato plants to SD conditions. Over-expression of StGA3ox2 under control of constitutive or leaf-specific promoters results in taller plants which, in contrast to StGA20ox1 over-expressers previously reported, tuberize earlier under SD conditions than the controls. By contrast, StGA3ox2 tuber-specific over-expression results in non-elongated plants with slightly delayed tuber induction. Together, our experiments support that StGA3ox2 expression and gibberellin metabolism significantly contribute to the tuberization time in strictly photoperiod-dependent potato plants.


Assuntos
Giberelinas/metabolismo , Fotoperíodo , Tubérculos/metabolismo , Solanum tuberosum/metabolismo , Sequência de Aminoácidos , Vias Biossintéticas , Ritmo Circadiano , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Isoenzimas/classificação , Isoenzimas/genética , Isoenzimas/metabolismo , Oxigenases de Função Mista/classificação , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Dados de Sequência Molecular , Filogenia , Componentes Aéreos da Planta/enzimologia , Componentes Aéreos da Planta/genética , Componentes Aéreos da Planta/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Tubérculos/genética , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Solanum tuberosum/enzimologia , Solanum tuberosum/genética , Fatores de Tempo
9.
J Plant Physiol ; 167(14): 1188-96, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20570010

RESUMO

Gibberellin 20-oxidases, enzymes of gibberellin (GA) biosynthesis, play an important role in (GA) homeostasis. To investigate the regulation of tomato SlGA20ox1 expression, a genomic clone was isolated, its promoter transcriptionally fused to the GUS reporter gene, and the construct used to transform Arabidopsis. Expression was found in diverse vegetative (leaves and roots) and reproductive (flowers) organs. GUS staining was also localized in the columella of secondary roots. GA negative feed-back regulation of SlGA20ox1:GUS was shown to be active both in tomato and in transformed Arabidopsis. Auxin (indol-3-acetic acid, 2,4-dichlorophenoxyacetic acid and naphtaleneacetic acid), triiodobenzoic acid (an inhibitor of auxin transport) and benzyladenine (a cytokinin) treatment induced SlGA20ox1:GUS expression associated with increased auxin content and/or signaling, detected using DR5:GUS expression as a marker. Interestingly, SlGA20ox:GUS expression was induced by auxin and root excision in the hypocotyl, an organ not showing GUS staining in control seedlings. In etiolated seedlings, SlGA20ox1:GUS expression occurred in the elongating hypocotyl region of etiolated seedlings and was down-regulated upon transfer to light associated with decrease of growth rate elongation. Our results show that feed-back, auxin and light regulation of SlGA20ox1 expression depends on DNA elements contained within the first 834bp of the 5' upstream promoter region. Putative DNA regulatory sequences involved in negative feed-back regulation and auxin response were identified in that promoter.


Assuntos
Arabidopsis/metabolismo , Oxigenases de Função Mista/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Solanum lycopersicum/enzimologia , Arabidopsis/genética , Oxigenases de Função Mista/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Plant Physiol ; 145(1): 246-57, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17660355

RESUMO

The role of gibberellins (GAs) in tomato (Solanum lycopersicum) fruit development was investigated. Two different inhibitors of GA biosynthesis (LAB 198999 and paclobutrazol) decreased fruit growth and fruit set, an effect reversed by GA(3) application. LAB 198999 reduced GA(1) and GA(8) content, but increased that of their precursors GA(53), GA(44), GA(19), and GA(20) in pollinated fruits. This supports the hypothesis that GA(1) is the active GA for tomato fruit growth. Unpollinated ovaries developed parthenocarpically in response to GA(3) > GA(1) = GA(4) > GA(20), but not to GA(19), suggesting that GA 20-oxidase activity was limiting in unpollinated ovaries. This was confirmed by analyzing the effect of pollination on transcript levels of SlCPS, SlGA20ox1, -2, and -3, and SlGA3ox1 and -2, encoding enzymes of GA biosynthesis. Pollination increased transcript content of SlGA20ox1, -2, and -3, and SlCPS, but not of SlGA3ox1 and -2. To investigate whether pollination also altered GA inactivation, full-length cDNA clones of genes encoding enzymes catalyzing GA 2-oxidases (SlGA2ox1, -2, -3, -4, and -5) were isolated and characterized. Transcript levels of these genes did not decrease early after pollination (5-d-old fruits), but transcript content reduction of all of them, mainly of SlGA2ox2, was found later (from 10 d after anthesis). We conclude that pollination mediates fruit set by activating GA biosynthesis mainly through up-regulation of GA20ox. Finally, the phylogenetic reconstruction of the GA2ox family clearly showed the existence of three gene subfamilies, and the phylogenetic position of SlGA2ox1, -2, -3, -4, and -5 was established.


Assuntos
Flores/fisiologia , Frutas/crescimento & desenvolvimento , Giberelinas/fisiologia , Oxigenases de Função Mista/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Clonagem Molecular , Flores/metabolismo , Genes de Plantas , Giberelinas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Oxigenases de Função Mista/genética , Dados de Sequência Molecular , Filogenia , Transcrição Gênica
11.
Plant Physiol ; 141(4): 1414-24, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16815952

RESUMO

A functional abscisic acid (ABA)-induced protein phosphatase type 2C (PP2C) was previously isolated from beech (Fagus sylvatica) seeds (FsPP2C2). Because transgenic work is not possible in beech, in this study we overexpressed this gene in Arabidopsis (Arabidopsis thaliana) to provide genetic evidence on FsPP2C2 function in seed dormancy and other plant responses. In contrast with other PP2Cs described so far, constitutive expression of FsPP2C2 in Arabidopsis, under the cauliflower mosaic virus 35S promoter, produced enhanced sensitivity to ABA and abiotic stress in seeds and vegetative tissues, dwarf phenotype, and delayed flowering, and all these effects were reversed by gibberellic acid application. The levels of active gibberellins (GAs) were reduced in 35S:FsPP2C2 plants, although transcript levels of AtGA20ox1 and AtGA3ox1 increased, probably as a result of negative feedback regulation, whereas the expression of GASA1 was induced by GAs. Additionally, FsPP2C2-overexpressing plants showed a strong induction of the Responsive to ABA 18 (RAB18) gene. Interestingly, FsPP2C2 contains two nuclear targeting sequences, and transient expression assays revealed that ABA directed this protein to the nucleus. Whereas other plant PP2Cs have been shown to act as negative regulators, our results support the hypothesis that FsPP2C2 is a positive regulator of ABA. Moreover, our results indicate the existence of potential cross-talk between ABA signaling and GA biosynthesis.


Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/genética , Fagus/enzimologia , Giberelinas/biossíntese , Fosfoproteínas Fosfatases/metabolismo , Proteínas de Plantas/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/anatomia & histologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fagus/embriologia , Proteínas de Fluorescência Verde/análise , Modelos Biológicos , Dados de Sequência Molecular , Pressão Osmótica , Fenótipo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas/anatomia & histologia , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/enzimologia , Proteína Fosfatase 2C , Proteínas Recombinantes de Fusão/análise , Sementes/genética , Sementes/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
12.
J Plant Growth Regul ; 20(4): 354-368, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11986761

RESUMO

Some phenotypic effects produced in plants by light are very similar to those induced by hormones. In this review, the light-gibberellin (GA) interaction in germination, de-etiolation, stem growth, and tuber formation (process regulated by GAs) are discussed. Germination of lettuce and Arabidopsis seeds depends on red irradiation (R), which enhances the expression of GA 3-oxidase genes (GA3ox) and leads to an increase in active GA content. De-etiolation of pea seedling alters the expression of GA20ox and GA3ox genes and induces a rapid decrease of GA1 content. Stem growth of green plants is also affected by diverse light irradiation characteristics. Low light intensity increases stem elongation and active GA content in pea and Brassica. Photoperiod controls active GA levels in long-day rosette (spinach and Silene) and in woody plants (Salix and hybrid aspen) by regulating different steps of GA biosynthesis, mainly through transcript levels of GA20ox and GA3ox genes. Light modulation of stem elongation in light-grown plants is controlled by phytochrome, which modifies GA biosynthesis and catabolism (tobacco, potato, cowpea, Arabidopsis) and GA-response (pea, cucumber, Arabidopsis). In Arabidopsis and tobacco, ATH1 (a gene encoding an homeotic transcription factor) is a positive mediator of a phyB-specific signal transduction cascade controlling GA levels by regulating the expression of GA20ox and GA3ox. Tuber formation in potato is controlled by photoperiod (through phyB) and GAs. Inductive short-day conditions alter the diurnal rhythm of GA20ox transcript abundance, and increases the expression of a new protein (PHOR1) that plays a role in the photoperiod-GA interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA