Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38260373

RESUMO

Cells maintain homeostasis via dynamic regulation of stress response pathways. Stress pathways transiently induce response regulons via negative feedback loops, but the extent to which individual genes provide feedback has not been comprehensively measured for any pathway. Here, we disrupted induction of each gene in the Saccharomyces cerevisiae heat shock response (HSR) and quantified cell growth and HSR dynamics following heat shock. The screen revealed a core feedback loop governing expression of the chaperone Hsp70 reinforced by an auxiliary feedback loop controlling Hsp70 subcellular localization. Mathematical modeling and live imaging demonstrated that multiple HSR targets converge to promote Hsp70 nuclear localization via its release from cytosolic condensates. Following ethanol stress, a distinct set of factors similarly converged on Hsp70, suggesting that nonredundant subsets of the HSR regulon confer feedback under different conditions. Flexible spatiotemporal feedback loops may broadly organize stress response regulons and expand their adaptive capacity.

2.
Elife ; 122023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37158601

RESUMO

The heat shock response (HSR) controls expression of molecular chaperones to maintain protein homeostasis. Previously, we proposed a feedback loop model of the HSR in which heat-denatured proteins sequester the chaperone Hsp70 to activate the HSR, and subsequent induction of Hsp70 deactivates the HSR (Krakowiak et al., 2018; Zheng et al., 2016). However, recent work has implicated newly synthesized proteins (NSPs) - rather than unfolded mature proteins - and the Hsp70 co-chaperone Sis1 in HSR regulation, yet their contributions to HSR dynamics have not been determined. Here, we generate a new mathematical model that incorporates NSPs and Sis1 into the HSR activation mechanism, and we perform genetic decoupling and pulse-labeling experiments to demonstrate that Sis1 induction is dispensable for HSR deactivation. Rather than providing negative feedback to the HSR, transcriptional regulation of Sis1 by Hsf1 promotes fitness by coordinating stress granules and carbon metabolism. These results support an overall model in which NSPs signal the HSR by sequestering Sis1 and Hsp70, while induction of Hsp70 - but not Sis1 - attenuates the response.


Assuntos
Resposta ao Choque Térmico , Proteínas de Saccharomyces cerevisiae , Fatores de Transcrição de Choque Térmico/metabolismo , Resposta ao Choque Térmico/genética , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Nat Cell Biol ; 25(11): 1691-1703, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37845327

RESUMO

Ribosome biogenesis is among the most resource-intensive cellular processes, with ribosomal proteins accounting for up to half of all newly synthesized proteins in eukaryotic cells. During stress, cells shut down ribosome biogenesis in part by halting rRNA synthesis, potentially leading to massive accumulation of aggregation-prone 'orphan' ribosomal proteins (oRPs). Here we show that, during heat shock in yeast and human cells, oRPs accumulate as reversible peri-nucleolar condensates recognized by the Hsp70 co-chaperone Sis1/DnaJB6. oRP condensates are liquid-like in cell-free lysate but solidify upon depletion of Sis1 or inhibition of Hsp70. When cells recover from heat shock, oRP condensates disperse in a Sis1- and Hsp70-dependent manner, and the oRP constituents are incorporated into functional ribosomes in the cytosol, enabling cells to efficiently resume growth. Preserving biomolecules in reversible condensates-like mRNAs in cytosolic stress granules and oRPs at the nucleolar periphery-may be a primary function of the Hsp70 chaperone system.


Assuntos
Proteínas Ribossômicas , Proteínas de Saccharomyces cerevisiae , Humanos , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ribossomos/genética , Ribossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA