Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 625(7995): 523-528, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38233618

RESUMO

Nearly every glacier in Greenland has thinned or retreated over the past few decades1-4, leading to glacier acceleration, increased rates of sea-level rise and climate impacts around the globe5-9. To understand how calving-front retreat has affected the ice-mass balance of Greenland, we combine 236,328 manually derived and AI-derived observations of glacier terminus positions collected from 1985 to 2022 and generate a 120-m-resolution mask defining the ice-sheet extent every month for nearly four decades. Here we show that, since 1985, the Greenland Ice Sheet (GrIS) has lost 5,091 ± 72 km2 of area, corresponding to 1,034 ± 120 Gt of ice lost to retreat. Our results indicate that, by neglecting calving-front retreat, current consensus estimates of ice-sheet mass balance4,9 have underestimated recent mass loss from Greenland by as much as 20%. The mass loss we report has had minimal direct impact on global sea level but is sufficient to affect ocean circulation and the distribution of heat energy around the globe10-12. On seasonal timescales, Greenland loses 193 ± 25 km2 (63 ± 6 Gt) of ice to retreat each year from a maximum extent in May to a minimum between September and October. We find that multidecadal retreat is highly correlated with the magnitude of seasonal advance and retreat of each glacier, meaning that terminus-position variability on seasonal timescales can serve as an indicator of glacier sensitivity to longer-term climate change.

2.
Nature ; 609(7929): 948-953, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35948639

RESUMO

Antarctica's ice shelves help to control the flow of glacial ice as it drains into the ocean, meaning that the rate of global sea-level rise is subject to the structural integrity of these fragile, floating extensions of the ice sheet1-3. Until now, data limitations have made it difficult to monitor the growth and retreat cycles of ice shelves on a large scale, and the full impact of recent calving-front changes on ice-shelf buttressing has not been understood. Here, by combining data from multiple optical and radar satellite sensors, we generate pan-Antarctic, spatially continuous coastlines at roughly annual resolution since 1997. We show that from 1997 to 2021, Antarctica experienced a net loss of 36,701 ± 1,465 square kilometres (1.9 per cent) of ice-shelf area that cannot be fully regained before the next series of major calving events, which are likely to occur in the next decade. Mass loss associated with ice-front retreat (5,874 ± 396 gigatonnes) has been approximately equal to mass change owing to ice-shelf thinning over the past quarter of a century (6,113 ± 452 gigatonnes), meaning that the total mass loss is nearly double that which could be measured by altimetry-based surveys alone. We model the impacts of Antarctica's recent coastline evolution in the absence of additional feedbacks, and find that calving and thinning have produced equivalent reductions in ice-shelf buttressing since 2007, and that further retreat could produce increasingly significant sea-level rise in the future.

3.
Rep Prog Phys ; 86(3)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36596254

RESUMO

Glaciers distinct from the Greenland and Antarctic ice sheets are currently losing mass rapidly with direct and severe impacts on the habitability of some regions on Earth as glacier meltwater contributes to sea-level rise and alters regional water resources in arid regions. In this review, we present the different techniques developed during the last two decades to measure glacier mass change from space: digital elevation model (DEM) differencing from stereo-imagery and synthetic aperture radar interferometry, laser and radar altimetry and space gravimetry. We illustrate their respective strengths and weaknesses to survey the mass change of a large Arctic ice body, the Vatnajökull Ice Cap (Iceland) and for the steep glaciers of the Everest area (Himalaya). For entire regions, mass change estimates sometimes disagree when a similar technique is applied by different research groups. At global scale, these discrepancies result in mass change estimates varying by 20%-30%. Our review confirms the need for more thorough inter-comparison studies to understand the origin of these differences and to better constrain regional to global glacier mass changes and, ultimately, past and future glacier contribution to sea-level rise.

4.
Proc Natl Acad Sci U S A ; 116(36): 17690-17695, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31427515

RESUMO

Carbon dioxide (CO2) emissions from freshwater ecosystems are almost universally predicted to increase with climate warming. Glacier-fed rivers and lakes, however, differ critically from those in nonglacierized catchments in that they receive little terrestrial input of organic matter for decomposition and CO2 production, and transport large quantities of easily mobilized comminuted sediments available for carbonate and silicate weathering reactions that can consume atmospheric CO2 We used a whole-watershed approach, integrating concepts from glaciology and limnology, to conclusively show that certain glacier-fed freshwater ecosystems are important and previously overlooked annual CO2 sinks due to the overwhelming influence of these weathering reactions. Using the glacierized Lake Hazen watershed (Nunavut, Canada, 82°N) as a model system, we found that weathering reactions in the glacial rivers actively consumed CO2 up to 42 km downstream of glaciers, and cumulatively transformed the High Arctic's most voluminous lake into an important CO2 sink. In conjunction with data collected at other proglacial freshwater sites in Greenland and the Canadian Rockies, we suggest that CO2 consumption in proglacial freshwaters due to glacial melt-enhanced weathering is likely a globally relevant phenomenon, with potentially important implications for regional annual carbon budgets in glacierized watersheds.

5.
Rev Geophys ; 58(3): e2019RG000672, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32879921

RESUMO

Global sea level provides an important indicator of the state of the warming climate, but changes in regional sea level are most relevant for coastal communities around the world. With improvements to the sea-level observing system, the knowledge of regional sea-level change has advanced dramatically in recent years. Satellite measurements coupled with in situ observations have allowed for comprehensive study and improved understanding of the diverse set of drivers that lead to variations in sea level in space and time. Despite the advances, gaps in the understanding of contemporary sea-level change remain and inhibit the ability to predict how the relevant processes may lead to future change. These gaps arise in part due to the complexity of the linkages between the drivers of sea-level change. Here we review the individual processes which lead to sea-level change and then describe how they combine and vary regionally. The intent of the paper is to provide an overview of the current state of understanding of the processes that cause regional sea-level change and to identify and discuss limitations and uncertainty in our understanding of these processes. Areas where the lack of understanding or gaps in knowledge inhibit the ability to provide the needed information for comprehensive planning efforts are of particular focus. Finally, a goal of this paper is to highlight the role of the expanded sea-level observation network-particularly as related to satellite observations-in the improved scientific understanding of the contributors to regional sea-level change.

6.
Nature ; 473(7347): 357-60, 2011 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-21508960

RESUMO

Mountain glaciers and ice caps are contributing significantly to present rates of sea level rise and will continue to do so over the next century and beyond. The Canadian Arctic Archipelago, located off the northwestern shore of Greenland, contains one-third of the global volume of land ice outside the ice sheets, but its contribution to sea-level change remains largely unknown. Here we show that the Canadian Arctic Archipelago has recently lost 61 ± 7 gigatonnes per year (Gt yr(-1)) of ice, contributing 0.17 ± 0.02 mm yr(-1) to sea-level rise. Our estimates are of regional mass changes for the ice caps and glaciers of the Canadian Arctic Archipelago referring to the years 2004 to 2009 and are based on three independent approaches: surface mass-budget modelling plus an estimate of ice discharge (SMB+D), repeat satellite laser altimetry (ICESat) and repeat satellite gravimetry (GRACE). All three approaches show consistent and large mass-loss estimates. Between the periods 2004-2006 and 2007-2009, the rate of mass loss sharply increased from 31 ± 8 Gt yr(-1) to 92 ± 12 Gt yr(-1) in direct response to warmer summer temperatures, to which rates of ice loss are highly sensitive (64 ± 14 Gt yr(-1) per 1 K increase). The duration of the study is too short to establish a long-term trend, but for 2007-2009, the increase in the rate of mass loss makes the Canadian Arctic Archipelago the single largest contributor to eustatic sea-level rise outside Greenland and Antarctica.

8.
Science ; 368(6496): 1239-1242, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32354841

RESUMO

Quantifying changes in Earth's ice sheets and identifying the climate drivers are central to improving sea level projections. We provide unified estimates of grounded and floating ice mass change from 2003 to 2019 using NASA's Ice, Cloud and land Elevation Satellite (ICESat) and ICESat-2 satellite laser altimetry. Our data reveal patterns likely linked to competing climate processes: Ice loss from coastal Greenland (increased surface melt), Antarctic ice shelves (increased ocean melting), and Greenland and Antarctic outlet glaciers (dynamic response to ocean melting) was partially compensated by mass gains over ice sheet interiors (increased snow accumulation). Losses outpaced gains, with grounded-ice loss from Greenland (200 billion tonnes per year) and Antarctica (118 billion tonnes per year) contributing 14 millimeters to sea level. Mass lost from West Antarctica's ice shelves accounted for more than 30% of that region's total.

9.
Sci Rep ; 9(1): 4447, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30872603

RESUMO

Glacial runoff is predicted to increase in many parts of the Arctic with climate change, yet little is known about the biogeochemical impacts of meltwaters on downstream freshwater ecosystems. Here we document the contemporary limnology of the rapidly changing glacierized watershed of the world's largest High Arctic lake (Lake Hazen), where warming since 2007 has increased delivery of glacial meltwaters to the lake by up to 10-times. Annually, glacial meltwaters accounted for 62-98% of dissolved nutrient inputs to the lake, depending on the chemical species and year. Lake Hazen was a strong sink for NO3--NO2-, NH4+ and DOC, but a source of DIC to its outflow the Ruggles River. Most nutrients entering Lake Hazen were, however, particle-bound and directly transported well below the photic zone via dense turbidity currents, thus reinforcing ultraoligotrophy in the lake rather than overcoming it. For the first time, we apply the land-to-ocean aquatic continuum framework in a large glacierized Arctic watershed, and provide a detailed and holistic description of the physical, chemical and biological limnology of the rapidly changing Lake Hazen watershed. Our findings highlight the sensitivity of freshwater ecosystems to the changing cryosphere, with implications for future water quality and productivity at high latitudes.

10.
Nat Clim Chang ; 5(5): 358-369, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31534490

RESUMO

Time-resolved satellite gravimetry has revolutionized understanding of mass transport in the Earth system. Since 2002, the Gravity Recovery and Climate Experiment (GRACE) has enabled monitoring of the terrestrial water cycle, ice sheet and glacier mass balance, sea level change and ocean bottom pressure variations and understanding responses to changes in the global climate system. Initially a pioneering experiment of geodesy, the time-variable observations have matured into reliable mass transport products, allowing assessment and forecast of a number of important climate trends and improve service applications such as the U.S. Drought Monitor. With the successful launch of the GRACE Follow-On mission, a multi decadal record of mass variability in the Earth system is within reach.

11.
Nat Commun ; 9(1): 1290, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29599477

RESUMO

Using a whole-watershed approach and a combination of historical, contemporary, modeled and paleolimnological datasets, we show that the High Arctic's largest lake by volume (Lake Hazen) has succumbed to climate warming with only a ~1 °C relative increase in summer air temperatures. This warming deepened the soil active layer and triggered large mass losses from the watershed's glaciers, resulting in a ~10 times increase in delivery of glacial meltwaters, sediment, organic carbon and legacy contaminants to Lake Hazen, a >70% decrease in lake water residence time, and near certainty of summer ice-free conditions. Concomitantly, the community assemblage of diatom primary producers in the lake shifted dramatically with declining ice cover, from shoreline benthic to open-water planktonic species, and the physiological condition of the only fish species in the lake, Arctic Char, declined significantly. Collectively, these changes place Lake Hazen in a biogeochemical, limnological and ecological regime unprecedented within the past ~300 years.

12.
Surv Geophys ; 38(1): 131-152, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32269399

RESUMO

Sea level rise is generally attributed to increased ocean heat content and increased rates glacier and ice melt. However, human transformations of Earth's surface have impacted water exchange between land, atmosphere, and ocean, ultimately affecting global sea level variations. Impoundment of water in reservoirs and artificial lakes has reduced the outflow of water to the sea, while river runoff has increased due to groundwater mining, wetland and endorheic lake storage losses, and deforestation. In addition, climate-driven changes in land water stores can have a large impact on global sea level variations over decadal timescales. Here, we review each component of negative and positive land water contribution separately in order to highlight and understand recent changes in land water contribution to sea level variations.

13.
Science ; 340(6134): 852-7, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-23687045

RESUMO

Glaciers distinct from the Greenland and Antarctic Ice Sheets are losing large amounts of water to the world's oceans. However, estimates of their contribution to sea level rise disagree. We provide a consensus estimate by standardizing existing, and creating new, mass-budget estimates from satellite gravimetry and altimetry and from local glaciological records. In many regions, local measurements are more negative than satellite-based estimates. All regions lost mass during 2003-2009, with the largest losses from Arctic Canada, Alaska, coastal Greenland, the southern Andes, and high-mountain Asia, but there was little loss from glaciers in Antarctica. Over this period, the global mass budget was -259 ± 28 gigatons per year, equivalent to the combined loss from both ice sheets and accounting for 29 ± 13% of the observed sea level rise.


Assuntos
Camada de Gelo , Água do Mar , Regiões Árticas , Groenlândia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA