Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 111(9): 2012-2030, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39191256

RESUMO

Genome analysis of individuals affected by retinitis pigmentosa (RP) identified two rare nucleotide substitutions at the same genomic location on chromosome 11 (g.61392563 [GRCh38]), 69 base pairs upstream of the start codon of the ciliopathy gene TMEM216 (c.-69G>A, c.-69G>T [GenBank: NM_001173991.3]), in individuals of South Asian and African ancestry, respectively. Genotypes included 71 homozygotes and 3 mixed heterozygotes in trans with a predicted loss-of-function allele. Haplotype analysis showed single-nucleotide variants (SNVs) common across families, suggesting ancestral alleles within the two distinct ethnic populations. Clinical phenotype analysis of 62 available individuals from 49 families indicated a similar clinical presentation with night blindness in the first decade and progressive peripheral field loss thereafter. No evident systemic ciliopathy features were noted. Functional characterization of these variants by luciferase reporter gene assay showed reduced promotor activity. Nanopore sequencing confirmed the lower transcription of the TMEM216 c.-69G>T allele in blood-derived RNA from a heterozygous carrier, and reduced expression was further recapitulated by qPCR, using both leukocytes-derived RNA of c.-69G>T homozygotes and total RNA from genome-edited hTERT-RPE1 cells carrying homozygous TMEM216 c.-69G>A. In conclusion, these variants explain a significant proportion of unsolved cases, specifically in individuals of African ancestry, suggesting that reduced TMEM216 expression might lead to abnormal ciliogenesis and photoreceptor degeneration.


Assuntos
Linhagem , Polimorfismo de Nucleotídeo Único , Retinose Pigmentar , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Adulto Jovem , Alelos , Haplótipos , Heterozigoto , Homozigoto , Proteínas de Membrana/genética , Fenótipo , Retinose Pigmentar/genética , Retinose Pigmentar/patologia
2.
Proc Natl Acad Sci U S A ; 119(27): e2115538119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35759666

RESUMO

Blue cone monochromacy (BCM) is an X-linked retinal disorder characterized by low vision, photoaversion, and poor color discrimination. BCM is due to the lack of long-wavelength-sensitive and middle-wavelength-sensitive cone photoreceptor function and caused by mutations in the OPN1LW/OPN1MW gene cluster on Xq28. Here, we investigated the prevalence and the landscape of submicroscopic structural variants (SVs) at single-base resolution in BCM patients. We found that about one-third (n = 73) of the 213 molecularly confirmed BCM families carry an SV, most commonly deletions restricted to the OPN1LW/OPN1MW gene cluster. The structure and precise breakpoints of the SVs were resolved in all but one of the 73 families. Twenty-two families-all from the United States-showed the same SV, and we confirmed a common ancestry of this mutation. In total, 42 distinct SVs were identified, including 40 previously unreported SVs, thereby quadrupling the number of precisely mapped SVs underlying BCM. Notably, there was no "region of overlap" among these SVs. However, 90% of SVs encompass the upstream locus control region, an essential enhancer element. Its minimal functional extent based on deletion mapping in patients was refined to 358 bp. Breakpoint analyses suggest diverse mechanisms underlying SV formation as well as in one case the gene conversion-based exchange of a 142-bp deletion between opsin genes. Using parsimonious assumptions, we reconstructed the composition and copy number of the OPN1LW/OPN1MW gene cluster prior to the mutation event and found evidence that large gene arrays may be predisposed to the occurrence of SVs at this locus.


Assuntos
Defeitos da Visão Cromática , Opsinas de Bastonetes , Defeitos da Visão Cromática/genética , Deleção de Genes , Humanos , Família Multigênica/genética , Células Fotorreceptoras Retinianas Cones , Opsinas de Bastonetes/genética
3.
Hum Mutat ; 39(1): 80-91, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28967191

RESUMO

Retinal dystrophies are a heterogeneous group of disorders of visual function leading to partial or complete blindness. We report the genetic basis of an unusual retinal dystrophy in five families with affected females and no affected males. Heterozygous missense variants were identified in the X-linked phosphoribosyl pyrophosphate synthetase 1 (PRPS1) gene: c.47C > T, p.(Ser16Phe); c.586C > T, p.(Arg196Trp); c.641G > C, p.(Arg214Pro); and c.640C > T, p.(Arg214Trp). Missense variants in PRPS1 are usually associated with disease in male patients, including Arts syndrome, Charcot-Marie-Tooth, and nonsyndromic sensorineural deafness. In our study families, affected females manifested a retinal dystrophy with interocular asymmetry. Three unrelated females from these families had hearing loss leading to a diagnosis of Usher syndrome. Other neurological manifestations were also observed in three individuals. Our data highlight the unexpected X-linked inheritance of retinal degeneration in females caused by variants in PRPS1 and suggest that tissue-specific skewed X-inactivation or variable levels of pyrophosphate synthetase-1 deficiency are the underlying mechanism(s). We speculate that the absence of affected males in the study families suggests that some variants may be male embryonic lethal when inherited in the hemizygous state. The unbiased nature of next-generation sequencing enables all possible modes of inheritance to be considered for association of gene variants with novel phenotypic presentation.


Assuntos
Genes Ligados ao Cromossomo X , Mutação de Sentido Incorreto , Degeneração Retiniana/diagnóstico , Degeneração Retiniana/genética , Ribose-Fosfato Pirofosfoquinase/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Sequência de Aminoácidos , Substituição de Aminoácidos , Feminino , Estudos de Associação Genética , Genótipo , Humanos , Modelos Moleculares , Linhagem , Fenótipo , Conformação Proteica , Ribose-Fosfato Pirofosfoquinase/química , Adulto Jovem
4.
Am J Hum Genet ; 90(2): 247-59, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22284829

RESUMO

X-linked megalocornea (MGC1) is an ocular anterior segment disorder characterized by an increased cornea diameter and deep anterior chamber evident at birth and later onset of mosaic corneal degeneration (shagreen), arcus juvenilis, and presenile cataracts. We identified copy-number variation, frameshift, missense, splice-site and nonsense mutations in the Chordin-like 1 gene (CHRDL1) on Xq23 as the cause of the condition in seven MGC1 families. CHRDL1 encodes ventroptin, a bone morphogenic protein antagonist with a proposed role in specification of topographic retinotectal projections. Electrophysiological evaluation revealed mild generalized cone system dysfunction and, in one patient, an interhemispheric asymmetry in visual evoked potentials. We show that CHRDL1 is expressed in the developing human cornea and anterior segment in addition to the retina. We explored the impact of loss of ventroptin function on brain function and morphology in vivo. CHRDL1 is differentially expressed in the human fetal brain, and there is high expression in cerebellum and neocortex. We show that MGC1 patients have a superior cognitive ability despite a striking focal loss of myelination of white matter. Our findings reveal an unexpected requirement for ventroptin during anterior segment development and the consequences of a lack of function in the retina and brain.


Assuntos
Segmento Anterior do Olho/embriologia , Córnea/anormalidades , Anormalidades do Olho/genética , Proteínas do Olho/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Mutação , Proteínas do Tecido Nervoso/genética , Adulto , Segmento Anterior do Olho/anormalidades , Sequência de Bases , Encéfalo/patologia , Paralisia Cerebral/genética , Paralisia Cerebral/metabolismo , Doenças da Córnea/genética , Doenças da Córnea/metabolismo , Variações do Número de Cópias de DNA/genética , Anormalidades do Olho/complicações , Anormalidades do Olho/embriologia , Proteínas do Olho/biossíntese , Feminino , Genes Ligados ao Cromossomo X , Doenças Genéticas Ligadas ao Cromossomo X/complicações , Doenças Genéticas Ligadas ao Cromossomo X/embriologia , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Masculino , Megalencefalia/genética , Megalencefalia/metabolismo , Pessoa de Meia-Idade , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/biossíntese , Linhagem , Fenótipo , Locos de Características Quantitativas , Retina/anormalidades , Retina/embriologia , Adulto Jovem
5.
Hum Mutat ; 35(11): 1354-62, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25168334

RESUMO

Mutations in the OPN1LW (L-) and OPN1MW (M-)cone opsin genes underlie a spectrum of cone photoreceptor defects from stationary loss of color vision to progressive retinal degeneration. Genotypes of 22 families with a range of cone disorders were grouped into three classes: deletions of the locus control region (LCR); missense mutation (p.Cys203Arg) in an L-/M-hybrid gene; and exon 3 single-nucleotide polymorphism (SNP) interchange haplotypes in an otherwise normal gene array. Moderate-to-high myopia was observed in all mutation categories. Individuals with LCR deletions or p.Cys203Arg mutations were more likely to have nystagmus and poor vision, with disease progression in some p.Cys203Arg patients. Three disease-associated exon 3 SNP haplotypes encoding LIAVA, LVAVA, or MIAVA were identified in our cohort. These patients were less likely to have nystagmus but more likely to show progression, with all patients over the age of 40 years having marked macular abnormalities. Previously, the haplotype LIAVA has been shown to result in exon 3 skipping. Here, we show that haplotypes LVAVA and MIAVA also result in aberrant splicing, with a residual low level of correctly spliced cone opsin. The OPN1LW/OPN1MW:c.532A>G SNP, common to all three disease-associated haplotypes, appears to be principally responsible for this mutational mechanism.


Assuntos
Opsinas dos Cones/genética , Estudos de Associação Genética , Genótipo , Mutação , Fenótipo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Substituição de Aminoácidos , Criança , Pré-Escolar , Ordem dos Genes , Inativação Gênica , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Doenças Genéticas Ligadas ao Cromossomo X/genética , Haplótipos , Hemizigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Oftalmoscópios , Linhagem , Polimorfismo de Nucleotídeo Único , Splicing de RNA , Retinose Pigmentar/diagnóstico , Retinose Pigmentar/genética , Deleção de Sequência , Adulto Jovem
6.
Hum Mol Genet ; 21(16): 3647-54, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22619378

RESUMO

X-linked retinitis pigmentosa (XLRP) is genetically heterogeneous with two causative genes identified, RPGR and RP2. We previously mapped a locus for a severe form of XLRP, RP23, to a 10.71 Mb interval on Xp22.31-22.13 containing 62 genes. Candidate gene screening failed to identify a causative mutation, so we adopted targeted genomic next-generation sequencing of the disease interval to determine the molecular cause of RP23. No coding variants or variants within or near splice sites were identified. In contrast, a variant deep within intron 9 of OFD1 increased the splice site prediction score 4 bp upstream of the variant. Mutations in OFD1 cause the syndromic ciliopathies orofaciodigital syndrome-1, which is male lethal, Simpson-Golabi-Behmel syndrome type 2 and Joubert syndrome. We tested the effect of the IVS9+706A>G variant on OFD1 splicing in vivo. In RP23 patient-derived RNA, we detected an OFD1 transcript with the insertion of a cryptic exon spliced between exons 9 and 10 causing a frameshift, p.N313fs.X330. Correctly spliced OFD1 was also detected in patient-derived RNA, although at reduced levels (39%), hence the mutation is not male lethal. Our data suggest that photoreceptors are uniquely susceptible to reduced expression of OFD1 and that an alternative disease mechanism can cause XLRP. This disease mechanism of reduced expression for a syndromic ciliopathy gene causing isolated retinal degeneration is reminiscent of CEP290 intronic mutations that cause Leber congenital amaurosis, and we speculate that reduced dosage of correctly spliced ciliopathy genes may be a common disease mechanism in retinal degenerations.


Assuntos
Mutação da Fase de Leitura , Proteínas/genética , Retinose Pigmentar/etiologia , Sequência de Aminoácidos , Sequência de Bases , Cromossomos Humanos X , Éxons , Humanos , Íntrons , Masculino , Dados de Sequência Molecular , Sítios de Splice de RNA , Retinose Pigmentar/genética , Análise de Sequência de DNA
7.
Eur J Hum Genet ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169229

RESUMO

Corneal dystrophies are phenotypically and genetically heterogeneous, often resulting in visual impairment caused by corneal opacification. We investigated the genetic cause of an autosomal dominant corneal stromal dystrophy in a pedigree with eight affected individuals in three generations. Affected individuals had diffuse central stromal opacity, with reduced visual acuity in older family members. Histopathology of affected cornea tissue removed during surgery revealed mild stromal textural alterations with alcianophilic deposits. Whole genome sequence data were generated for four affected individuals. No rare variants (MAF < 0.001) were identified in established corneal dystrophy genes. However, a novel heterozygous missense variant in exon 4 of SPARCL1, NM_004684: c.334G > A; p.(Glu112Lys), which is predicted to be damaging, segregated with disease. SPARC-like protein 1 (SPARCL1) is a secreted matricellular protein involved in cell migration, cell adhesion, tissue repair, and remodelling. Interestingly, SPARCL1 has been shown to regulate decorin. Heterozygous variants in DCN, encoding decorin, cause autosomal dominant congenital stromal corneal dystrophy, suggesting a common pathogenic pathway. Therefore, we performed immunohistochemistry to compare SPARCL1 and decorin localisation in corneal tissue from an affected family member and an unaffected control. Strikingly, the level of decorin was significantly decreased in the corneal stroma of the affected tissue, and SPARCL1 appeared to be retained in the epithelium. In summary, we describe a novel autosomal dominant corneal stromal dystrophy associated with a missense variant in SPARCL1, extending the phenotypic and genetic heterogeneity of inherited corneal disease.

8.
Am J Hum Genet ; 87(1): 26-39, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20579627

RESUMO

X-linked cone and cone-rod dystrophies (XLCOD and XLCORD) are a heterogeneous group of progressive disorders that solely or primarily affect cone photoreceptors. Mutations in exon ORF15 of the RPGR gene are the most common underlying cause. In a previous study, we excluded RPGR exon ORF15 in some families with XLCOD. Here, we report genetic mapping of XLCOD to Xq26.1-qter. A significant LOD score was detected with marker DXS8045 (Z(max) = 2.41 [theta = 0.0]). The disease locus encompasses the cone opsin gene array on Xq28. Analysis of the array revealed a missense mutation (c. 529T>C [p. W177R]) in exon 3 of both the long-wavelength-sensitive (LW, red) and medium-wavelength-sensitive (MW, green) cone opsin genes that segregated with disease. Both exon 3 sequences were identical and were derived from the MW gene as a result of gene conversion. The amino acid W177 is highly conserved in visual and nonvisual opsins across species. We show that W177R in MW opsin and the equivalent W161R mutation in rod opsin result in protein misfolding and retention in the endoplasmic reticulum. We also demonstrate that W177R misfolding, unlike the P23H mutation in rod opsin that causes retinitis pigmentosa, is not rescued by treatment with the pharmacological chaperone 9-cis-retinal. Mutations in the LW/MW cone opsin gene array can, therefore, lead to a spectrum of disease, ranging from color blindness to progressive cone dystrophy (XLCOD5).


Assuntos
Opsinas dos Cones/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Células Fotorreceptoras Retinianas Cones/patologia , Doenças Retinianas/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Cromossomos Humanos X/genética , Feminino , Estudos de Associação Genética , Ligação Genética , Loci Gênicos , Haplótipos , Humanos , Escore Lod , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Linhagem , Estrutura Secundária de Proteína , Doenças Retinianas/patologia , Doenças Retinianas/fisiopatologia
9.
Mol Vis ; 15: 876-84, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19421413

RESUMO

PURPOSE: To perform a phenotypic assessment of members of three British families with blue cone monochromatism (BCM), and to determine the underlying molecular genetic basis of disease. METHODS: Affected members of three British families with BCM were examined clinically and underwent detailed electrophysiological and psychophysical testing. Blood samples were taken for DNA extraction. Molecular analysis involved the amplification of the coding regions of the long (L) and medium (M) wave cone opsin genes and the upstream locus control region (LCR) by polymerase chain reaction (PCR). Gene products were directly sequenced and analyzed. RESULTS: In all three families, genetic analysis identified that the underlying cause of BCM involved an unequal crossover within the opsin gene array, with an inactivating mutation. Family 1 had a single 5'-L-M-3' hybrid gene, with an inactivating Cys203Arg (C203R) mutation. Family 3 had an array composed of a C203R inactivated 5'-L-M-3' hybrid gene followed by a second inactive gene. Families 1 and 3 had typical clinical, electrophysiological, and psychophysical findings consistent with stationary BCM. A novel mutation was detected in Family 2 that had a single hybrid gene lacking exon 2. This family presented clinical and psychophysical evidence of a slowly progressive phenotype. CONCLUSIONS: Two of the BCM-causing family genotypes identified in this study comprised different hybrid genes, each of which contained the commonly described C203R inactivating mutation. The genotype in the family with evidence of a slowly progressive phenotype represents a novel BCM mutation. The deleted exon 2 in this family is not predicted to result in a shift in the reading frame, therefore we hypothesize that an abnormal opsin protein product may accumulate and lead to cone cell loss over time. This is the first report of slow progression associated with this class of mutation in the L or M opsin genes in BCM.


Assuntos
Defeitos da Visão Cromática/genética , Opsinas/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Eletrorretinografia , Família , Feminino , Deleção de Genes , Inativação Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Fenótipo , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Reino Unido
10.
Invest Ophthalmol Vis Sci ; 59(10): 4238-4248, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30128495

RESUMO

Purpose: To assess residual cone structure in subjects with mutations in exon 2, 3, and 4 of the OPN1LW or OPN1MW opsin. Methods: Thirteen males had their OPN1LW/OPN1MW opsin genes characterized. The cone mosaic was imaged using both confocal and nonconfocal split-detection adaptive optics scanning light ophthalmoscopy (AOSLO), and retinal thickness was evaluated using optical coherence tomography (OCT). Six subjects completed serial imaging over a maximum period of 18 months and cone density was measured across imaging sessions. Results: Ten subjects had an OPN1LW/OPN1MW "interchange" opsin mutation designated as LIAVA or LVAVA, which both introduce exon 3 splicing defects leading to a lack of functional photopigment in cones expressing LIAVA and greatly reduced functional photopigment in cones expressing LVAVA. Despite disrupted cone reflectivity and reduced numerosity, residual inner segments could be visualized. Similar patterns were observed in individuals with an exon 2 insertion, or an exon 4 splice defect, both of which are also expected to produce cones that are devoid of functional opsin protein. OCT revealed variably reduced retinal thickness. A significant inverse relationship was found between the proportion of waveguiding cones and axial length. Conclusions: Split-detection imaging revealed that the altered appearance of the cone mosaic in confocal images for subjects with exon 2, 3, and 4 mutations was generally due to disrupted waveguiding, rather than structural loss, making them possible candidates for gene therapy to restore cone function. The relative fraction of waveguiding cones was highly variable across subjects, which appears to influence emmetropization in these subjects.


Assuntos
Defeitos da Visão Cromática , Opsinas dos Cones/genética , Genes Ligados ao Cromossomo X/genética , Mutação , Células Fotorreceptoras Retinianas Cones/patologia , Adulto , Comprimento Axial do Olho/patologia , Defeitos da Visão Cromática/genética , Defeitos da Visão Cromática/patologia , Emetropia/fisiologia , Éxons/genética , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Retina/patologia , Opsinas de Bastonetes/genética
12.
Invest Ophthalmol Vis Sci ; 57(8): 3853-63, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27447086

RESUMO

PURPOSE: Mutations in the coding sequence of the L and M opsin genes are often associated with X-linked cone dysfunction (such as Bornholm Eye Disease, BED), though the exact color vision phenotype associated with these disorders is variable. We examined individuals with L/M opsin gene mutations to clarify the link between color vision deficiency and cone dysfunction. METHODS: We recruited 17 males for imaging. The thickness and integrity of the photoreceptor layers were evaluated using spectral-domain optical coherence tomography. Cone density was measured using high-resolution images of the cone mosaic obtained with adaptive optics scanning light ophthalmoscopy. The L/M opsin gene array was characterized in 16 subjects, including at least one subject from each family. RESULTS: There were six subjects with the LVAVA haplotype encoded by exon 3, seven with LIAVA, two with the Cys203Arg mutation encoded by exon 4, and two with a novel insertion in exon 2. Foveal cone structure and retinal thickness was disrupted to a variable degree, even among related individuals with the same L/M array. CONCLUSIONS: Our findings provide a direct link between disruption of the cone mosaic and L/M opsin variants. We hypothesize that, in addition to large phenotypic differences between different L/M opsin variants, the ratio of expression of first versus downstream genes in the L/M array contributes to phenotypic diversity. While the L/M opsin mutations underlie the cone dysfunction in all of the subjects tested, the color vision defect can be caused either by the same mutation or a gene rearrangement at the same locus.


Assuntos
Defeitos da Visão Cromática/genética , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Células Fotorreceptoras Retinianas Cones/patologia , Doenças Retinianas/patologia , Opsinas de Bastonetes/genética , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Defeitos da Visão Cromática/patologia , Doenças Genéticas Ligadas ao Cromossomo X/genética , Genótipo , Humanos , Masculino , Mosaicismo , Mutação/genética , Fenótipo , Retina/patologia , Doenças Retinianas/genética , Adulto Jovem
13.
J Clin Endocrinol Metab ; 90(12): 6392-5, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16189254

RESUMO

BACKGROUND: Sclerosteosis is an autosomal recessive sclerosing bone disorder due to deficiency of sclerostin, a protein secreted by the osteocytes that inhibits bone formation. In the present study we assessed the effect of variable expression of the genetic defect on bone mineral density (BMD) in patients and carriers of the determinant gene. METHODS: We studied 25 individuals (seven patients and 18 phenotypically normal heterozygotes). BMD was measured by dual x-ray absorptiometry at the lumbar spine, total hip, and distal forearm, and lateral radiographs of the skull were obtained. RESULTS: Individuals with sclerosteosis had markedly increased BMD at all skeletal sites (Z-score ranges: lumbar spine, +7.73 to +14.43; total hip, +7.84 to +11.51; forearm, +4.44 to +9.53). In heterozygotes, BMD was above the mean value of healthy age-matched individuals at all skeletal sites and had a wide range of normal and clearly increased values. Skull radiographs showed the typical hyperostotic changes in affected individuals and mild or no changes in heterozygotes. CONCLUSIONS: Heterozygous carriers of sclerosteosis have BMD values consistently higher than the mean of healthy subjects without any of the bone complications encountered in homozygotes. This finding suggests that the production and/or activity of sclerostin can be titrated in vivo, leading to variable increases in bone mass without any unwanted skeletal effects, a hypothesis of obvious significance for the development of new therapeutics for osteoporosis.


Assuntos
Densidade Óssea , Doenças Ósseas Metabólicas/etiologia , Doenças Ósseas Metabólicas/metabolismo , Proteínas Morfogenéticas Ósseas/deficiência , Genes Recessivos , Heterozigoto , Proteínas Adaptadoras de Transdução de Sinal , Adolescente , Adulto , Idoso , Doenças Ósseas Metabólicas/diagnóstico por imagem , Doenças Ósseas Metabólicas/genética , Criança , Pré-Escolar , Marcadores Genéticos , Humanos , Vértebras Lombares/metabolismo , Pessoa de Meia-Idade , Radiografia , Crânio/diagnóstico por imagem
14.
Am J Med Genet ; 110(2): 144-52, 2002 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-12116252

RESUMO

Van Buchem disease is an autosomal recessive sclerosing bone dysplasia characterized by skeletal hyperostosis, overgrowth of the mandible, and a liability to entrapment of the seventh and eighth cranial nerves. The genetic determinant maps to chromosome 17q12-q21. We refined the critical interval to the < 1-Mb region between D17S2250 and D17S2253 in 15 affected individuals, all of whom shared a common disease haplotype. Furthermore, we report here the identification of a 52-kb deletion located within the interval and encompassing D17S1789 that is 100% concordant with the disorder. Although the deletion itself does not appear to disrupt the coding region of any known or novel gene(s), the closest flanking genes are MEOX1 on the proximal side, and SOST on the distal side of the deletion. MEOX1 is known to be important for the development of the axial skeleton, whereas the SOST gene is the determinant of sclerosteosis, a disorder that shares many features with van Buchem disease, thus raising the possibility that van Buchem disease results from dysregulation of the expression of one or both of these genes.


Assuntos
Proteínas Morfogenéticas Ósseas , Deleção Cromossômica , Cromossomos Humanos Par 17/genética , Marcadores Genéticos , Osteocondrodisplasias/genética , Proteínas Adaptadoras de Transdução de Sinal , África , Sequência de Bases , DNA Intergênico/genética , Feminino , Predisposição Genética para Doença/genética , Haplótipos , Humanos , Masculino , Repetições de Microssatélites , Países Baixos , Osteocondrodisplasias/patologia , Osteosclerose/genética , Polimorfismo de Nucleotídeo Único , Proteínas/genética
15.
PLoS One ; 9(8): e104163, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25093588

RESUMO

We describe novel CHRDL1 mutations in ten families with X-linked megalocornea (MGC1). Our mutation-positive cohort enabled us to establish ultrasonography as a reliable clinical diagnostic tool to distinguish between MGC1 and primary congenital glaucoma (PCG). Megalocornea is also a feature of Neuhäuser or megalocornea-mental retardation (MMR) syndrome, a rare condition of unknown etiology. In a male patient diagnosed with MMR, we performed targeted and whole exome sequencing (WES) and identified a novel missense mutation in CHRDL1 that accounts for his MGC1 phenotype but not his non-ocular features. This finding suggests that MMR syndrome, in some cases, may be di- or multigenic. MGC1 patients have reduced central corneal thickness (CCT); however no X-linked loci have been associated with CCT, possibly because the majority of genome-wide association studies (GWAS) overlook the X-chromosome. We therefore explored whether variants on the X-chromosome are associated with CCT. We found rs149956316, in intron 6 of CHRDL1, to be the most significantly associated single nucleotide polymorphism (SNP) (p = 6.81×10(-6)) on the X-chromosome. However, this association was not replicated in a smaller subset of whole genome sequenced samples. This study highlights the importance of including X-chromosome SNP data in GWAS to identify potential loci associated with quantitative traits or disease risk.


Assuntos
Paralisia Cerebral/genética , Doenças da Córnea/genética , Paquimetria Corneana , Oftalmopatias Hereditárias/genética , Proteínas do Olho/genética , Genes Ligados ao Cromossomo X , Estudos de Associação Genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Deficiência Intelectual/genética , Megalencefalia/genética , Mutação/genética , Proteínas do Tecido Nervoso/genética , Adolescente , Adulto , Paralisia Cerebral/diagnóstico por imagem , Pré-Escolar , Doenças da Córnea/diagnóstico por imagem , Epilepsia/complicações , Epilepsia/genética , Exoma/genética , Oftalmopatias Hereditárias/diagnóstico por imagem , Família , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico por imagem , Predisposição Genética para Doença , Glaucoma/congênito , Glaucoma/genética , Humanos , Deficiência Intelectual/complicações , Deficiência Intelectual/diagnóstico por imagem , Masculino , Megalencefalia/diagnóstico por imagem , Pessoa de Meia-Idade , Hipotonia Muscular/complicações , Hipotonia Muscular/genética , Linhagem , Fenótipo , Ultrassonografia , Adulto Jovem
16.
Hum Gene Ther ; 24(12): 993-1006, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24067079

RESUMO

Human X-linked blue-cone monochromacy (BCM), a disabling congenital visual disorder of cone photoreceptors, is a candidate disease for gene augmentation therapy. BCM is caused by either mutations in the red (OPN1LW) and green (OPN1MW) cone photoreceptor opsin gene array or large deletions encompassing portions of the gene array and upstream regulatory sequences that would predict a lack of red or green opsin expression. The fate of opsin-deficient cone cells is unknown. We know that rod opsin null mutant mice show rapid postnatal death of rod photoreceptors. Using in vivo histology with high-resolution retinal imaging, we studied a cohort of 20 BCM patients (age range 5-58) with large deletions in the red/green opsin gene array. Already in the first years of life, retinal structure was not normal: there was partial loss of photoreceptors across the central retina. Remaining cone cells had detectable outer segments that were abnormally shortened. Adaptive optics imaging confirmed the existence of inner segments at a spatial density greater than that expected for the residual blue cones. The evidence indicates that human cones in patients with deletions in the red/green opsin gene array can survive in reduced numbers with limited outer segment material, suggesting potential value of gene therapy for BCM.


Assuntos
Defeitos da Visão Cromática/terapia , Terapia Genética , Opsinas de Bastonetes/genética , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Defeitos da Visão Cromática/genética , Defeitos da Visão Cromática/patologia , Feminino , Deleção de Genes , Humanos , Camundongos , Pessoa de Meia-Idade , Mutação , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia
17.
Invest Ophthalmol Vis Sci ; 53(13): 8006-15, 2012 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-23139274

RESUMO

PURPOSE: To evaluate retinal structure and photoreceptor mosaic integrity in subjects with OPN1LW and OPN1MW mutations. METHODS: Eleven subjects were recruited, eight of whom have been previously described. Cone and rod density was measured using images of the photoreceptor mosaic obtained from an adaptive optics scanning light ophthalmoscope (AOSLO). Total retinal thickness, inner retinal thickness, and outer nuclear layer plus Henle fiber layer (ONL+HFL) thickness were measured using cross-sectional spectral-domain optical coherence tomography (SD-OCT) images. Molecular genetic analyses were performed to characterize the OPN1LW/OPN1MW gene array. RESULTS: While disruptions in retinal lamination and cone mosaic structure were observed in all subjects, genotype-specific differences were also observed. For example, subjects with "L/M interchange" mutations resulting from intermixing of ancestral OPN1LW and OPN1MW genes had significant residual cone structure in the parafovea (∼25% of normal), despite widespread retinal disruption that included a large foveal lesion and thinning of the parafoveal inner retina. These subjects also reported a later-onset, progressive loss of visual function. In contrast, subjects with the C203R missense mutation presented with congenital blue cone monochromacy, with retinal lamination defects being restricted to the ONL+HFL and the degree of residual cone structure (8% of normal) being consistent with that expected for the S-cone submosaic. CONCLUSIONS: The photoreceptor phenotype associated with OPN1LW and OPN1MW mutations is highly variable. These findings have implications for the potential restoration of visual function in subjects with opsin mutations. Our study highlights the importance of high-resolution phenotyping to characterize cellular structure in inherited retinal disease; such information will be critical for selecting patients most likely to respond to therapeutic intervention and for establishing a baseline for evaluating treatment efficacy.


Assuntos
Defeitos da Visão Cromática/diagnóstico , Opsinas dos Cones/genética , Mutação , Células Fotorreceptoras de Vertebrados/patologia , Degeneração Retiniana/diagnóstico , Opsinas de Bastonetes/genética , Adolescente , Adulto , Defeitos da Visão Cromática/genética , Análise Mutacional de DNA , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oftalmoscopia , Fenótipo , Degeneração Retiniana/genética , Tomografia de Coerência Óptica , Acuidade Visual/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA