Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35162968

RESUMO

The successful clinical application of bone tissue engineering requires customized implants based on the receiver's bone anatomy and defect characteristics. Three-dimensional (3D) printing in small animal orthopedics has recently emerged as a valuable approach in fabricating individualized implants for receiver-specific needs. In veterinary medicine, because of the wide range of dimensions and anatomical variances, receiver-specific diagnosis and therapy are even more critical. The ability to generate 3D anatomical models and customize orthopedic instruments, implants, and scaffolds are advantages of 3D printing in small animal orthopedics. Furthermore, this technology provides veterinary medicine with a powerful tool that improves performance, precision, and cost-effectiveness. Nonetheless, the individualized 3D-printed implants have benefited several complex orthopedic procedures in small animals, including joint replacement surgeries, critical size bone defects, tibial tuberosity advancement, patellar groove replacement, limb-sparing surgeries, and other complex orthopedic procedures. The main purpose of this review is to discuss the application of 3D printing in small animal orthopedics based on already published papers as well as the techniques and materials used to fabricate 3D-printed objects. Finally, the advantages, current limitations, and future directions of 3D printing in small animal orthopedics have been addressed.


Assuntos
Procedimentos Ortopédicos/instrumentação , Impressão Tridimensional/instrumentação , Animais , Humanos , Modelos Anatômicos , Modelos Animais , Próteses e Implantes
2.
Int J Mol Sci ; 23(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35897825

RESUMO

Regenerative medicine is the branch of medicine that effectively uses stem cell therapy and tissue engineering strategies to guide the healing or replacement of damaged tissues or organs. A crucial element is undoubtedly the biomaterial that guides biological events to restore tissue continuity. The polymers, natural or synthetic, find wide application thanks to their great adaptability. In fact, they can be used as principal components, coatings or vehicles to functionalize several biomaterials. There are many leading centers for the research and development of biomaterials in Italy. The aim of this review is to provide an overview of the current state of the art on polymer research for regenerative medicine purposes. The last five years of scientific production of the main Italian research centers has been screened to analyze the current advancement in tissue engineering in order to highlight inputs for the development of novel biomaterials and strategies.


Assuntos
Materiais Biocompatíveis , Medicina Regenerativa , Materiais Biocompatíveis/uso terapêutico , Polímeros , Transplante de Células-Tronco , Engenharia Tecidual , Cicatrização
3.
Adv Exp Med Biol ; 1088: 585-591, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30390271

RESUMO

After spinal cord injury (SCI), patients spend daily several hours in wheelchairs, sitting on their hamstring muscles. SCI causes muscle atrophy and wasting, which is especially severe after complete and permanent damage to lower motor neurons. A European Union (EU)-supported work demonstrates that electrical fields produced by large electrodes and purpose-developed electrical stimulators recover both quadriceps and hamstring muscles, producing a cushioning effect capable of benefitting SCI patients, even in the worst case of complete and long-term lower motor neuron denervation of leg muscles. We reported that 20 out of 25 patients completed a 2-year h-bFES program, which resulted in (1) a 35% increase in cross-sectional area of the quadriceps muscles (P < 0.001), (2) a 75% increase in mean diameter of quadriceps muscle fibers (P < 0.001), and (3) improvement of the ultrastructural organization of contractile machinery and of the Ca2+-handling system. Though not expected, after 2 years during which the 20 subjects performed 5 days per week h-bFES of the atrophic quadriceps muscles, the CT cross-sectional area of the hamstring muscles also augmented, increasing from 26.9+/-8.4 (cm2) to 30.7+/-9.8 (cm2), representing a significant (p ≤ 0.05) 15% increase. Here we show by quantitative muscle color computed tomography (QMC-CT) that h-bFES-induced tissue improvements are present also in the hamstring muscles: a once supposed drawback (lack of specificity of muscle activation by large surface electrodes) is responsible for a major positive clinical effect. Interestingly, 2 years of home-based FES by large surface electrodes reversed also the denervation-induced skin atrophy, increasing epidermis thickness. Finally, we would like to attract attention of the readers to quantitative muscle color computed tomography (QMC-CT), a sensitive quantitative imaging analysis of anatomically defined skeletal muscles introduced by our group to monitor atrophy/degeneration of skeletal muscle tissue. Worldwide acceptance of QMC-CT will provide physicians an improved tool to quantitate skeletal muscle atrophy/degeneration before and during rehabilitation strategies so that therapy for mobility-impaired persons can be better prescribed, evaluated, and altered where needed.


Assuntos
Terapia por Estimulação Elétrica , Neurônios Motores/patologia , Atrofia Muscular/terapia , Traumatismos da Medula Espinal/reabilitação , Denervação , Humanos , Músculo Esquelético/patologia
4.
Aging Clin Exp Res ; 29(4): 579-590, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27592133

RESUMO

Many factors contribute to the decline of skeletal muscle that occurs as we age. This is a reality that we may combat, but not prevent because it is written into our genome. The series of records from World Master Athletes reveals that skeletal muscle power begins to decline at the age of 30 years and continues, almost linearly, to zero at the age of 110 years. Here we discuss evidence that denervation contributes to the atrophy and slowness of aged muscle. We compared muscle from lifelong active seniors to that of sedentary elderly people and found that the sportsmen have more muscle bulk and slow fiber type groupings, providing evidence that physical activity maintains slow motoneurons which reinnervate muscle fibers. Further, accelerated muscle atrophy/degeneration occurs with irreversible Conus and Cauda Equina syndrome, a spinal cord injury in which the human leg muscles may be permanently disconnected from the nervous system with complete loss of muscle fibers within 5-8 years. We used histological morphometry and Muscle Color Computed Tomography to evaluate muscle from these peculiar persons and reveal that contraction produced by home-based Functional Electrical Stimulation (h-bFES) recovers muscle size and function which is reversed if h-bFES is discontinued. FES also reverses muscle atrophy in sedentary seniors and modulates mitochondria in horse muscles. All together these observations indicate that FES modifies muscle fibers by increasing contractions per day. Thus, FES should be considered in critical care units, rehabilitation centers and nursing facilities when patients are unable or reluctant to exercise.


Assuntos
Envelhecimento/fisiologia , Terapia por Estimulação Elétrica , Exercício Físico/fisiologia , Debilidade Muscular/reabilitação , Traumatismos da Medula Espinal/reabilitação , Fatores Etários , Idoso , Animais , Cauda Equina/lesões , Estimulação Elétrica , Cavalos , Humanos , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/inervação , Músculo Esquelético/patologia , Atrofia Muscular/reabilitação
5.
Eur J Transl Myol ; 34(1)2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526419

RESUMO

Scientific conferences increasingly suffer from the need for short presentations in which speakers like to dwell on the details of their work. A mitigating factor is to encourage discussion and planning of collaborations by organizing small meetings in a hotel large enough to host all attendees. This extends discussions' opportunities during morning breakfasts, lunches, dinners and long evenings together. Even if the vast majority of participants will not stay for the entire duration of the Conference, the possibilities for specialists to interact with specialists who are even very distant in terms of knowledge increase enormously. In any case, the results in terms of new job opportunities for young participants outweigh the costs for the organizers. Thirty years of Padova Muscle Days offer many examples, but the authors of this report on the state of the art of Mobility Medicine testify that this also happened in the 2024 Five Days of Muscle and Mobility Medicine (2024Pdm3) hosted at the Hotel Petrarca, Thermae of Euganea Hills and Padua, Italy which is in fact a valid countermeasure to the inevitable tendencies towards hyperspecialization that the explosive increase in scientific progress brings with it.

6.
Artif Organs ; 37(6): 567-73, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23550540

RESUMO

Total hip arthroplasty (THA) can be achieved by using a cemented or noncemented prosthesis. Besides patient's age, weight, and other clinical signs, the evaluation of the quality of the bones is a crucial parameter on which orthopedic surgeons base the choice between cemented and noncemented THA. Although bone density generally decreases with age and a cemented THA is preferred for older subjects, the bone quality of a particular patient should be quantitatively evaluated. This study proposes a new method to quantitatively measure bone density and fracture risk by using 3D models extracted by a preoperative computed tomography (CT) scan of the patient. Also, the anatomical structure and compactness of the quadriceps muscle is computed to provide a more complete view. A spatial reconstruction of the tissues is obtained by means of CT image processing, then a detailed 3D model of bone mineral density of the femur is provided by including quantitative CT density information (CT must be precalibrated). A finite element analysis will provide a map of the strains around the proximal femur socket when solicited by typical stresses caused by an implant. The risk for structural failure due to press-fitting and compressive stress during noncemented THA surgery was estimated by calculating a bone fracture risk index (ratio between actual compressive stress and estimated failure stress of the bone). A clinical trial was carried out including 36 volunteer patients (ages 22-77) who underwent unilateral THA surgery for the first time: 18 received a cemented implant and 18 received a noncemented implant. CT scans were acquired before surgery, immediately after, and after 12 months. Bone and quadriceps density results were higher in the healthy leg in about 80% of the cases. Bone and quadriceps density generally decrease with age but mineral density may vary significantly between patients. Preliminary results indicate the highest fracture risk at the calcar and the lowest at the intertrocanteric line, with some difference between patients. An analysis of the results suggest that this methodology can be a valid noninvasive decision support tool for THA planning; however, further analyses are needed to tune the technique and to allow clinical applications. Combination with gait analysis data is planned.


Assuntos
Artroplastia de Quadril , Densidade Óssea/fisiologia , Fraturas do Quadril/diagnóstico por imagem , Articulação do Quadril/diagnóstico por imagem , Modelos Anatômicos , Adulto , Idoso , Cimentos Ósseos , Feminino , Fraturas do Quadril/cirurgia , Articulação do Quadril/cirurgia , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Desenho de Prótese , Radiografia , Medição de Risco
7.
Eur J Transl Myol ; 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36786151

RESUMO

At the end of the 2022 Padua Days of Muscle and Mobility Medicine (Pdm3) the next year's meeting was scheduled from 29 March to 1 April 2023. Despite the worsening evolution of the crisis in Eastern Europe, the program was confirmed in autumn 2022 with Scientific Sessions that will take place over three full days in the Aula Guariento of the Galileian Academy of Arts, Letters and Sciences of Padua (March 29, 2023) and then at the Conference Room of the Hotel Petrarca, Thermae of Euganean Hills (Padua), Italy. Collected during autumn and early winter, many titles and abstracts where submitted (about 100 Oral presentations are listed in the preliminary Program by January 31, 2023) confirming attractiveness of the 2023 Pdm3. The four days will include oral presentations of scientists and clinicians from Austria, Bulgaria, Canada, Denmark, France, Georgia, Germany, Iceland, Ireland, Italy, Mongolia, Norway, Russia, Slovakia, Slovenia, Spain, Switzerland, The Netherlands and USA. Together with the preliminary Program at January 31, 2023, the Collection of Abstracts is e-published in this Issue 33 (1) 2023 of the European Journal of Translational Myology (EJTM). You are invited to join, submitting your Last Minute Abstracts to ugo.carraro@unipd.it by March 15, 2023. Furthermore, with the more generous deadline of May 20, 2023, submit please "Communications" to the European Journal of Translational Myology (SCOPUS Cite Score Tracker 2023: 3.2 by January 5, 2023) and/or to the 2023 Special Issue: "Pdm3" of the Journal Diagnostics, MDPI, Basel (I.F. near to 4.0) with deadline September 30, 2023. Both journals will provide discounts to the first accepted typescripts. See you soon at the Hotel Petrarca of Montegrotto Terme, Padua, Italy. For a promo of the 2023 Pdm3 link to: https://www.youtube.com/watch?v=zC02D4uPWRg.

8.
Front Integr Neurosci ; 17: 1087976, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37384237

RESUMO

Phase slips arise from state transitions of the coordinated activity of cortical neurons which can be extracted from the EEG data. The phase slip rates (PSRs) were studied from the high-density (256 channel) EEG data, sampled at 16.384 kHz, of five adult subjects during covert visual object naming tasks. Artifact-free data from 29 trials were averaged for each subject. The analysis was performed to look for phase slips in the theta (4-7 Hz), alpha (7-12 Hz), beta (12-30 Hz), and low gamma (30-49 Hz) bands. The phase was calculated with the Hilbert transform, then unwrapped and detrended to look for phase slip rates in a 1.0 ms wide stepping window with a step size of 0.06 ms. The spatiotemporal plots of the PSRs were made by using a montage layout of 256 equidistant electrode positions. The spatiotemporal profiles of EEG and PSRs during the stimulus and the first second of the post-stimulus period were examined in detail to study the visual evoked potentials and different stages of visual object recognition in the visual, language, and memory areas. It was found that the activity areas of PSRs were different as compared with EEG activity areas during the stimulus and post-stimulus periods. Different stages of the insight moments during the covert object naming tasks were examined from PSRs and it was found to be about 512 ± 21 ms for the 'Eureka' moment. Overall, these results indicate that information about the cortical phase transitions can be derived from the measured EEG data and can be used in a complementary fashion to study the cognitive behavior of the brain.

9.
Gait Posture ; 105: 92-98, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37515891

RESUMO

BACKGROUND: Single and motor or cognitive dual-gait analysis is often used in clinical settings to evaluate older adults affected by neurological and movement disorders or with a stroke history. Gait features are frequently investigated using Machine Learning (ML) with significant results that can help clinicians in diagnosis and rehabilitation. The present study aims to classify patients with stroke, neurological and movement disorders using ML to analyze gait characteristics and to understand the importance of the single and dual-task features among Korean older adults. METHODS: A cohort of 122 non-hospitalized Korean older adult participated in a single and a cognitive dual-task gait performance analysis. The extracted temporal and spatial features, together with clinical data, were used as input for the binary classification using tree-based ML algorithms. A repeated-stratified 10-fold cross-validation was performed to better evaluate multiple classification metrics with a final feature importance analysis. RESULTS AND SIGNIFICANCE: The best accuracy - maximum >90 % - for gait and neurological disorders classification was obtained with Random Forest. In the stroke classification a 91.7 % of maximum accuracy was reached, with a significant recall of 92 %. The feature importance analysis showed a substantial balance between single and dual-task, while clinical data did not show elevated importance. The current findings indicate that a cognitive dual-task gait performance is highly recommendable together with a single-task in the analysis of older population, particularly for patients with a history of stroke. The results could be useful to medical professionals in treating and diagnosing motor and neurological disorders, and to improve rehabilitation strategies for stroke patients. Furthermore, the results confirm the proficiency of the tree-based ML algorithms in biomedical data analysis. Finally, in the future, this research could be replicated with a non-Asian population dataset to deepen the understanding of gait differences between Asian-Korean population and other ethnicities.


Assuntos
Transtornos dos Movimentos , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Idoso , Cognição , Marcha , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/psicologia , República da Coreia
10.
Materials (Basel) ; 16(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37687590

RESUMO

Tissue-engineered bone tissue grafts are a promising alternative to the more conventional use of natural donor bone grafts. However, choosing an appropriate biomaterial/scaffold to sustain cell survival, proliferation, and differentiation in a 3D environment remains one of the most critical issues in this domain. Recently, chitosan/gelatin/genipin (CGG) hybrid scaffolds have been proven as a more suitable environment to induce osteogenic commitment in undifferentiated cells when doped with graphene oxide (GO). Some concern is, however, raised towards the use of graphene and graphene-related material in medical applications. The purpose of this work was thus to check if the osteogenic potential of CGG scaffolds without added GO could be increased by improving the medium diffusion in a 3D culture of differentiating cells. To this aim, the level of extracellular matrix (ECM) mineralization was evaluated in human bone-marrow-derived stem cell (hBMSC)-seeded 3D CGG scaffolds upon culture under a perfusion flow in a dedicated custom-made bioreactor system. One week after initiating dynamic culture, histological/histochemical evaluations of CGG scaffolds were carried out to analyze the early osteogenic commitment of the culture. The analyses show the enhanced ECM mineralization of the 3D perfused culture compared to the static counterpart. The results of this investigation reveal a new perspective on more efficient clinical applications of CGG scaffolds without added GO.

11.
Bioengineering (Basel) ; 10(9)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37760205

RESUMO

Manual material handling and load lifting are activities that can cause work-related musculoskeletal disorders. For this reason, the National Institute for Occupational Safety and Health proposed an equation depending on the following parameters: intensity, duration, frequency, and geometric characteristics associated with the load lifting. In this paper, we explore the feasibility of several Machine Learning (ML) algorithms, fed with frequency-domain features extracted from electromyographic (EMG) signals of back muscles, to discriminate biomechanical risk classes defined by the Revised NIOSH Lifting Equation. The EMG signals of the multifidus and erector spinae muscles were acquired by means of a wearable device for surface EMG and then segmented to extract several frequency-domain features relating to the Total Power Spectrum of the EMG signal. These features were fed to several ML algorithms to assess their prediction power. The ML algorithms produced interesting results in the classification task, with the Support Vector Machine algorithm outperforming the others with accuracy and Area under the Receiver Operating Characteristic Curve values of up to 0.985. Moreover, a correlation between muscular fatigue and risky lifting activities was found. These results showed the feasibility of the proposed methodology-based on wearable sensors and artificial intelligence-to predict the biomechanical risk associated with load lifting. A future investigation on an enriched study population and additional lifting scenarios could confirm the potential of the proposed methodology and its applicability in the field of occupational ergonomics.

12.
Front Bioeng Biotechnol ; 11: 1282024, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38149173

RESUMO

Introduction: The aging population poses significant challenges to healthcare systems globally, necessitating a comprehensive understanding of age-related changes affecting physical function. Age-related functional decline highlights the urgency of understanding how tissue composition changes impact mobility, independence, and quality of life in older adults. Previous research has emphasized the influence of muscle quality, but the role of tissue composition asymmetry across various tissue types remains understudied. This work develops asymmetry indicators based on muscle, connective and fat tissue extracted from cross-sectional CT scans, and shows their interplay with BMI and lower extremity function among community-dwelling older adults. Methods: We used data from 3157 older adults from 71 to 98 years of age (mean: 80.06). Tissue composition asymmetry was defined by the differences between the right and left sides using CT scans and the non-Linear Trimodal Regression Analysis (NTRA) parameters. Functional mobility was measured through a 6-meter gait (Normal-GAIT and Fast-GAIT) and the Timed Up and Go (TUG) performance test. Statistical analysis included paired t-tests, polynomial fitting curves, and regression analysis to uncover relationships between tissue asymmetry, age, and functional mobility. Results: Findings revealed an increase in tissue composition asymmetry with age. Notably, muscle and connective tissue width asymmetry showed significant variation across age groups. BMI classifications and gait tasks also influenced tissue asymmetry. The Fast-GAIT task demonstrated a substantial separation in tissue asymmetry between normal and slow groups, whereas the Normal-GAIT and the TUG task did not exhibit such distinction. Muscle quality, as reflected by asymmetry indicators, appears crucial in understanding age-related changes in muscle function, while fat and connective tissue play roles in body composition and mobility. Discussion: Our study emphasizes the importance of tissue asymmetry indicators in understanding how muscle function changes with age in older individuals, demonstrating their role as risk factor and their potential employment in clinical assessment. We also identified the influence of fat and connective tissue on body composition and functional mobility. Incorporating the NTRA technology into clinical evaluations could enable personalized interventions for older adults, promoting healthier aging and maintaining physical function.

13.
Cartilage ; 14(3): 351-374, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36541701

RESUMO

OBJECTIVE: Assessment of human joint cartilage is a crucial tool to detect and diagnose pathological conditions. This exploratory study developed a workflow for 3D modeling of cartilage and bone based on multimodal imaging. New evaluation metrics were created and, a unique set of data was gathered from healthy controls and patients with clinically evaluated degeneration or trauma. DESIGN: We present a novel methodology to evaluate knee bone and cartilage based on features extracted from magnetic resonance imaging (MRI) and computed tomography (CT) data. We developed patient specific 3D models of the tibial, femoral, and patellar bones and cartilages. Forty-seven subjects with a history of degenerative disease, traumatic events, or no symptoms or trauma (control group) were recruited in this study. Ninety-six different measurements were extracted from each knee, 78 2D and 18 3D measurements. We compare the sensitivity of different metrics to classify the cartilage condition and evaluate degeneration. RESULTS: Selected features extracted show significant difference between the 3 groups. We created a cumulative index of bone properties that demonstrated the importance of bone condition to assess cartilage quality, obtaining the greatest sensitivity on femur within medial and femoropatellar compartments. We were able to classify degeneration with a maximum recall value of 95.9 where feature importance analysis showed a significant contribution of the 3D parameters. CONCLUSION: The present work demonstrates the potential for improving sensitivity in cartilage assessment. Indeed, current trends in cartilage research point toward improving treatments and therefore our contribution is a first step toward sensitive and personalized evaluation of cartilage condition.


Assuntos
Doenças das Cartilagens , Cartilagem Articular , Humanos , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/patologia , Joelho , Doenças das Cartilagens/diagnóstico por imagem , Doenças das Cartilagens/patologia , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/patologia , Patela/diagnóstico por imagem
14.
J Clin Med ; 12(19)2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37834809

RESUMO

Innovative strategies have shown beneficial effects in healing wound management involving, however, a time-consuming and arduous process in clinical contexts. Micro-fragmented skin tissue acts as a slow-released natural scaffold and continuously delivers growth factors, and much other modulatory information, into the microenvironment surrounding damaged wounds by a paracrine function on the resident cells which supports the regenerative process. In this study, in vitro and in vivo investigations were conducted to ascertain improved effectiveness and velocity of the wound healing process with the application of fragmented dermo-epidermal units (FdeU), acquired via a novel medical device (Hy-Tissue® Micrograft Technology). MTT test; LDH test; ELISA for growth factor investigation (IL) IL-2, IL-6, IL-7 IL-8, IL-10; IGF-1; adiponectin; Fibroblast Growth Factor (FGF); Vascular Endothelial Growth Factor (VEGF); and Tumor Necrosis Factor (TNF) were assessed. Therefore, clinical evaluation in 11 patients affected by Chronic Wounds (CW) and treated with FdeU were investigated. Functional outcome was assessed pre-operatory, 2 months after treatment (T0), and 6 months after treatment (T1) using the Wound Bed Score (WBS) and Vancouver Scar Scale (VSS). In this current study, we demonstrate the potential of resident cells to proliferate from the clusters of FdeU seeded in a monolayer that efficiently propagate the chronic wound. Furthermore, in this study we report how the discharge of trophic/reparative proteins are able to mediate the in vitro paracrine function of proliferation, migration, and contraction rate in fibroblasts and keratinocytes. Our investigations recommend FdeU as a favorable tool in wound healing, displaying in vitro growth-promoting potential to enhance current therapeutic mechanisms.

15.
Front Hum Neurosci ; 17: 1197142, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37529404

RESUMO

Introduction: There is accumulating evidence that many pathological conditions affecting human balance are consequence of postural control (PC) failure or overstimulation such as in motion sickness. Our research shows the potential of using the response to a complex postural control task to assess patients with early-stage Parkinson's Disease (PD). Methods: We developed a unique measurement model, where the PC task is triggered by a moving platform in a virtual reality environment while simultaneously recording EEG, EMG and CoP signals. This novel paradigm of assessment is called BioVRSea. We studied the interplay between biosignals and their differences in healthy subjects and with early-stage PD. Results: Despite the limited number of subjects (29 healthy and nine PD) the results of our work show significant differences in several biosignals features, demonstrating that the combined output of posturography, muscle activation and cortical response is capable of distinguishing healthy from pathological. Discussion: The differences measured following the end of the platform movement are remarkable, as the induced sway is different between the two groups and triggers statistically relevant cortical activities in α and θ bands. This is a first important step to develop a multi-metric signature able to quantify PC and distinguish healthy from pathological response.

16.
Eur J Transl Myol ; 33(4)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38112609

RESUMO

At the end of the 2023 Padua Days of Muscle and Mobility Medicine the next year's meeting was scheduled from 27 February to 2 March 2024 (2024Pdm3). During the summer and autumn the program was confirmed with Scientific Sessions that will take place over five days, starting in the afternoon of February 27, 2024 at the Conference Room of the Hotel Petrarca, Thermae of Euganean Hills (Padua), Italy. As usual, the next day will be spent in Padua, in this occasion at the San Luca Hall of the Santa Giustina monastery in Prato della Valle, Padua, Italy. Collected during Autumn 2023, many more titles and abstracts than expected were submitted, forcing the organization of parallel sessions both on March 1 and March 2 2024 confirming attractiveness of the 2024 Pdm3. The five days will include oral presentations of scientists and clinicians from Argentina, Austria, Belgium, Brazil, Canada, Denmark, Egypt, France, Germany, Iceland, Ireland, Italy, Romania, Russia, Slovenia, Switzerland, UK and USA. Together with the preliminary Program at December 1, 2023, the early submitted Abstracts is e-published in this Issue 33 (4) 2023 of the European Journal of Translational Myology (EJTM). You are invited to join, submitting your Last Minute Abstracts to ugo.carraro@unipd.it by February 1, 2024. Furthermore, with the more generous deadline of May 20, 2024, submit please "Communications" to the European Journal of Translational Myology (Clarivate's ESCI Impact factor 2.2; SCOPUS Cite Score: 3.2). See you soon at the Hotel Petrarca in Montegrotto Terme, Padua, on February 27, 2024, but the complete program can be followed from home via zoom connection.

17.
Arch Ital Urol Androl ; 94(1): 62-64, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35352527

RESUMO

OBJECTIVE: Propionibacterium acnes has been implicated in the pathogenesis of prostate disease as acute and chronic prostatic inflammation, benign prostatic hyperplasia and prostate cancer although it should still be clarified if Propionibacterium acnes (P. acnes) is a commensal or accidental prostate pathogen. Aiming to evaluate the pathogenic potential for genitourinary tract of Propionibacterium acnes, we investigated the frequency of P. acnes genome in urine or semen samples from men with recurrent symptoms of urinary infection and negative testing for the most common urinary tract pathogens and sexually transmitted infections (STI) agents as Chlamydia trachomatis, Mycoplasma genitalium, Mycoplasma hominis, Ureaplasma parvum and Ureaplasma urealyticum. MATERIALS AND METHODS: The DNA extracted from urine and semen samples was analyzed for evaluating the P. acnes genome presence by real-time polymerase chain reaction (PCR). Infections were treated with vancomycin and cephalosporins antibiotics and then the search for the P.acnes genome by realtime PCR was repeated. RESULTS: The P. acnes qualitative real-time PCR revealed the genome in 73 out of 159 samples examined (108 urine and 51 semen). After antibiotic therapy, P. acnes was never detected. CONCLUSIONS: These results suggested that P. acnes genome determination should be performed in cases of chronic inflammation in the urinary tract to identify an unknown potential pathogen of genitourinary tract.


Assuntos
Mycoplasma genitalium , Propionibacterium acnes , Humanos , Masculino , Mycoplasma genitalium/genética , Mycoplasma hominis/genética , Sêmen , Ureaplasma urealyticum/genética
18.
Artigo em Inglês | MEDLINE | ID: mdl-34990367

RESUMO

Postural control is a complex feedback system that relies on vast array of sensory inputs in order to maintain a stable upright stance. The brain cortex plays a crucial role in the processing of this information and in the elaboration of a successful adaptive strategy to external stimulation preventing loss of balance and falls. In the present work, the participants postural control system was challenged by disrupting the upright stance via a mechanical skeletal muscle vibration applied to the calves. The EEG source connectivity method was used to investigate the cortical response to the external stimulation and highlight the brain network primarily involved in high-level coordination of the postural control system. The cortical network reconfiguration was assessed during two experimental conditions of eyes open and eyes closed and the network flexibility (i.e. its dynamic reconfiguration over time) was correlated with the sample entropy of the stabilogram sway. The results highlight two different cortical strategies in the alpha band: the predominance of frontal lobe connections during open eyes and the strengthening of temporal-parietal network connections in the absence of visual cues. Furthermore, a high correlation emerges between the flexibility in the regions surrounding the right temporo-parietal junction and the sample entropy of the CoP sway, suggesting their centrality in the postural control system. These results open the possibility to employ network-based flexibility metrics as markers of a healthy postural control system, with implications in the diagnosis and treatment of postural impairing diseases.


Assuntos
Eletroencefalografia , Equilíbrio Postural , Animais , Bovinos , Sinais (Psicologia) , Eletroencefalografia/métodos , Humanos , Equilíbrio Postural/fisiologia , Vibração
19.
Front Hum Neurosci ; 16: 1038976, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36590061

RESUMO

Introduction: Postural control is a sensorimotor mechanism that can reveal neurophysiological disorder. The present work studies the quantitative response to a complex postural control task. Methods: We measure electroencephalography (EEG), electromyography (EMG), and center of pressure (CoP) signals during a virtual reality (VR) experience called BioVRSea with the aim of classifying different postural control responses. The BioVRSea paradigm is based on six different phases where motion and visual stimulation are modulated throughout the experiment, inducing subjects to a different adaptive postural control strategy. The goal of the study is to assess the predictability of those responses. During the experiment, brain activity was recorded from a 64-channel EEG, muscle activity was determined with six wireless EMG sensors placed on lower leg muscles, and individual movement measured by the CoP. One-hundred and seventy-two healthy individuals underwent the BioVRSea paradigm and 318 features were extracted from each phase of the experiment. Machine learning techniques were employed to: (1) classify the phases of the experiment; (2) assess the most notable features; and (3) identify a quantitative pattern for healthy responses. Results: The results show that the EEG features are not sufficient to predict the distinct phases of the experiment, but they can distinguish visual and motion onset stimulation. EMG features and CoP features, when used jointly, can predict five out of six phases with a mean accuracy of 74.4% (±8%) and an AUC of 0.92. The most important feature to identify the different adaptive strategies is the Squared Root Mean Distance of points on Medio-Lateral axis (RDIST_ML). Discussion: This work shows the importance and the feasibility of a quantitative evaluation in a complex postural control task and demonstrates the potential of EEG, CoP, and EMG for assessing pathological conditions. These predictive systems pave the way for developing an objective assessment of pathological behavior PC responses. This will be a first step in identifying individual disorders and treatment options.

20.
Eur J Transl Myol ; 32(4)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36458415

RESUMO

Postural instability and loss of vestibular and somatosensory acuity can be part of the signs encountered in Parkinson's Disease (PD). Visual dependency is described in PD. These modifications of sensory input hierarchy are predictors of motion sickness (MS). The aim of this study was to assess MS susceptibility and effects of real induced MS in posture. 63 PD patients, whose medication levels (levodopa) reflected the pathology were evaluated, and 27 healthy controls, filled a MS questionnaire; 9 PD patients and 43 healthy controls were assessed by posturography using virtual reality. Drug amount predicted visual MS (p=0.01), but not real induced MS susceptibility. PD patients did not experience postural instability in virtual reality, contrary to healthy controls. Since PD patients do not seem to feel vestibular stimulated MS, they may not rely on vestibular and somatosensory inputs during the stimulation. However, they feel visually induced MS more with increased levodopa drug effect. Levodopa amount can increase visual dependency. The strongest MS predictors must be studied in PD to better understand the effect of visual stimulation and its absence in vestibular stimulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA