Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chem Rev ; 122(6): 5977-6039, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35107989

RESUMO

The stimulator of interferon genes (STING) cellular signaling pathway is a promising target for cancer immunotherapy. Activation of the intracellular STING protein triggers the production of a multifaceted array of immunostimulatory molecules, which, in the proper context, can drive dendritic cell maturation, antitumor macrophage polarization, T cell priming and activation, natural killer cell activation, vascular reprogramming, and/or cancer cell death, resulting in immune-mediated tumor elimination and generation of antitumor immune memory. Accordingly, there is a significant amount of ongoing preclinical and clinical research toward further understanding the role of the STING pathway in cancer immune surveillance as well as the development of modulators of the pathway as a strategy to stimulate antitumor immunity. Yet, the efficacy of STING pathway agonists is limited by many drug delivery and pharmacological challenges. Depending on the class of STING agonist and the desired administration route, these may include poor drug stability, immunocellular toxicity, immune-related adverse events, limited tumor or lymph node targeting and/or retention, low cellular uptake and intracellular delivery, and a complex dependence on the magnitude and kinetics of STING signaling. This review provides a concise summary of the STING pathway, highlighting recent biological developments, immunological consequences, and implications for drug delivery. This review also offers a critical analysis of an expanding arsenal of chemical strategies that are being employed to enhance the efficacy, safety, and/or clinical utility of STING pathway agonists and lastly draws attention to several opportunities for therapeutic advancements.


Assuntos
Proteínas de Membrana , Neoplasias , Sistemas de Liberação de Medicamentos , Humanos , Imunoterapia/métodos , Proteínas de Membrana/metabolismo , Neoplasias/tratamento farmacológico , Transdução de Sinais
2.
ACS Nano ; 18(18): 11631-11643, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38652829

RESUMO

Pharmacological activation of the retinoic acid-inducible gene I (RIG-I) pathway holds promise for increasing tumor immunogenicity and improving the response to immune checkpoint inhibitors (ICIs). However, the potency and clinical efficacy of 5'-triphosphate RNA (3pRNA) agonists of RIG-I are hindered by multiple pharmacological barriers, including poor pharmacokinetics, nuclease degradation, and inefficient delivery to the cytosol where RIG-I is localized. Here, we address these challenges through the design and evaluation of ionizable lipid nanoparticles (LNPs) for the delivery of 3p-modified stem-loop RNAs (SLRs). Packaging of SLRs into LNPs (SLR-LNPs) yielded surface charge-neutral nanoparticles with a size of ∼100 nm that activated RIG-I signaling in vitro and in vivo. SLR-LNPs were safely administered to mice via both intratumoral and intravenous routes, resulting in RIG-I activation in the tumor microenvironment (TME) and the inhibition of tumor growth in mouse models of poorly immunogenic melanoma and breast cancer. Significantly, we found that systemic administration of SLR-LNPs reprogrammed the breast TME to enhance the infiltration of CD8+ and CD4+ T cells with antitumor function, resulting in enhanced response to αPD-1 ICI in an orthotopic EO771 model of triple-negative breast cancer. Therapeutic efficacy was further demonstrated in a metastatic B16.F10 melanoma model, with systemically administered SLR-LNPs significantly reducing lung metastatic burden compared to combined αPD-1 + αCTLA-4 ICI. Collectively, these studies have established SLR-LNPs as a translationally promising immunotherapeutic nanomedicine for potent and selective activation of RIG-I with the potential to enhance response to ICIs and other immunotherapeutic modalities.


Assuntos
Imunoterapia , Nanopartículas , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Lipídeos/química , Camundongos Endogâmicos C57BL , Nanopartículas/química , Microambiente Tumoral/efeitos dos fármacos
3.
Cancer Res Commun ; 3(9): 1800-1809, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37691856

RESUMO

It was recently found that patients with relapsing remitting multiple sclerosis exhibit widespread loss of adenosine-to-inosine (A-to-I) RNA editing, which contributes to the accumulation of immunostimulatory double-stranded Alu RNA in circulating leukocytes and an attendant increase in levels of proinflammatory cytokines (e.g., type I IFNs). A specific Alu RNA (i.e., AluJb RNA) was implicated in activating multiple RNA-sensing pathways and found to be a potent innate immune agonist. Here, we have performed a bioinformatic analysis of A-to-I RNA editing in human melanoma samples and determined that pre-therapy levels of A-to-I RNA editing negatively correlate with survival times, suggesting that an accumulation of endogenous double-stranded Alu RNA might contribute to cancer patient survival. Furthermore, we demonstrated that immunostimulatory Alu RNA can be leveraged pharmacologically for cancer immunotherapy. AluJb RNA was in vitro transcribed and then formulated with endosome-destabilizing polymer nanoparticles to improve intracellular delivery of the RNA and enable activation of RNA-sensing pathways. AluJb RNA/polymer complexes (i.e., Alu-NPs) were engineered to form colloidally stable nanoparticles that exhibited immunostimulatory activity in vitro and in vivo. Finally, the therapeutic potential of Alu-NPs for the treatment of cancer was demonstrated by attenuated tumor growth and prolonged survival in the B16.F10 murine melanoma tumor model. Thus, these data collectively implicate intratumoral Alu RNA as a potentiator of antitumor innate immunity and identify AluJb RNA as a novel nucleic acid immunotherapeutic for cancer. Significance: Loss of A-to-I editing leads to accumulation of unedited Alu RNAs that activate innate immunity via RNA-sensing pattern recognition receptors. When packaged into endosome-releasing polymer nanoparticles, AluJB RNA becomes highly immunostimulatory and can be used pharmacologically to inhibit tumor growth in mouse melanoma models. These findings identify Alu RNAs as a new class of nucleic acid innate immune agonists for cancer immunotherapy.


Assuntos
Melanoma , Ácidos Nucleicos , Humanos , Animais , Camundongos , Imunoterapia , Imunização , RNA de Cadeia Dupla , Melanoma/genética
4.
Sci Immunol ; 8(83): eadd1153, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37146128

RESUMO

The tumor-associated vasculature imposes major structural and biochemical barriers to the infiltration of effector T cells and effective tumor control. Correlations between stimulator of interferon genes (STING) pathway activation and spontaneous T cell infiltration in human cancers led us to evaluate the effect of STING-activating nanoparticles (STANs), which are a polymersome-based platform for the delivery of a cyclic dinucleotide STING agonist, on the tumor vasculature and attendant effects on T cell infiltration and antitumor function. In multiple mouse tumor models, intravenous administration of STANs promoted vascular normalization, evidenced by improved vascular integrity, reduced tumor hypoxia, and increased endothelial cell expression of T cell adhesion molecules. STAN-mediated vascular reprogramming enhanced the infiltration, proliferation, and function of antitumor T cells and potentiated the response to immune checkpoint inhibitors and adoptive T cell therapy. We present STANs as a multimodal platform that activates and normalizes the tumor microenvironment to enhance T cell infiltration and function and augments responses to immunotherapy.


Assuntos
Nanopartículas , Neoplasias , Camundongos , Animais , Humanos , Imunoterapia , Linfócitos T , Modelos Animais de Doenças , Microambiente Tumoral
5.
J Control Release ; 345: 354-370, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35301055

RESUMO

Traditional approaches to cancer vaccines elicit weak CD8+ T cell responses and have largely failed to meet clinical expectations. This is in part due to inefficient antigen cross-presentation, inappropriate selection of adjuvant and its formulation, poor vaccine pharmacokinetics, and/or suboptimal coordination of antigen and adjuvant delivery. Here, we describe a nanoparticle vaccine platform for facile co-loading and dual-delivery of antigens and nucleic acid adjuvants that elicits robust antigen-specific cellular immune responses. The nanovaccine design is based on diblock copolymers comprising a poly(ethylene glycol)-rich first block that is functionalized with reactive moieties for covalent conjugation of antigen via disulfide linkages, and a pH-responsive second block for electrostatic packaging of nucleic acids that also facilitates endosomal escape of associated vaccine cargo to the cytosol. Using polyIC, a clinically-advanced nucleic acid adjuvant, we demonstrated that endosomolytic nanoparticles promoted the cytosolic co-delivery of polyIC and protein antigen, which acted synergistically to enhance antigen cross-presentation, co-stimulatory molecule expression, and cytokine production by dendritic cells. We also found that the vaccine platform increased the accumulation of antigen and polyIC in the local draining lymph nodes. Consequently, dual-delivery of antigen and polyIC with endsomolytic nanoparticles significantly enhanced the magnitude and functionality of CD8+ T cell responses relative to a mixture of antigen and polyIC, resulting in inhibition of tumor growth in a mouse tumor model. Collectively, this work provides a proof-of-principle for a new cancer vaccine platform that strongly augments anti-tumor cellular immunity via cytosolic co-delivery of antigen and nucleic acid adjuvant.


Assuntos
Vacinas Anticâncer , Nanopartículas , Adjuvantes Imunológicos/farmacologia , Animais , Antígenos/química , Linfócitos T CD8-Positivos , Citosol , Células Dendríticas , Imunidade Celular , Camundongos , Nanopartículas/química , Ovalbumina , RNA
6.
Front Immunol ; 12: 753472, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899704

RESUMO

When compartmentally mislocalized within cells, nucleic acids can be exceptionally immunostimulatory and can even trigger the immune-mediated elimination of cancer. Specifically, the accumulation of double-stranded DNA in the cytosol can efficiently promote antitumor immunity by activating the cGAMP synthase (cGAS) / stimulator of interferon genes (STING) cellular signaling pathway. Targeting this cytosolic DNA sensing pathway with interferon stimulatory DNA (ISD) is therefore an attractive immunotherapeutic strategy for the treatment of cancer. However, the therapeutic activity of ISD is limited by several drug delivery barriers, including susceptibility to deoxyribonuclease degradation, poor cellular uptake, and inefficient cytosolic delivery. Here, we describe the development of a nucleic acid immunotherapeutic, NanoISD, which overcomes critical delivery barriers that limit the activity of ISD and thereby promotes antitumor immunity through the pharmacological activation of cGAS at the forefront of the STING pathway. NanoISD is a nanoparticle formulation that has been engineered to confer deoxyribonuclease resistance, enhance cellular uptake, and promote endosomal escape of ISD into the cytosol, resulting in potent activation of the STING pathway via cGAS. NanoISD mediates the local production of proinflammatory cytokines via STING signaling. Accordingly, the intratumoral administration of NanoISD induces the infiltration of natural killer cells and T lymphocytes into murine tumors. The therapeutic efficacy of NanoISD is demonstrated in preclinical tumor models by attenuated tumor growth, prolonged survival, and an improved response to immune checkpoint blockade therapy.


Assuntos
DNA , Sistemas de Liberação de Medicamentos , Nanopartículas , Nucleotidiltransferases , Animais , Feminino , Humanos , Camundongos , Neoplasias do Colo/terapia , Citocinas/biossíntese , Citocinas/genética , DNA/administração & dosagem , DNA/síntese química , DNA/farmacologia , DNA/uso terapêutico , Ensaios de Seleção de Medicamentos Antitumorais , Endossomos/fisiologia , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Linfócitos do Interstício Tumoral/imunologia , Neoplasias Mamárias Experimentais/terapia , Melanoma Experimental/terapia , Proteínas de Membrana/fisiologia , Camundongos Endogâmicos C57BL , Nanopartículas/administração & dosagem , Nanopartículas/uso terapêutico , Neoplasias/imunologia , Nucleotidiltransferases/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Tionucleotídeos/farmacologia , Microambiente Tumoral/efeitos dos fármacos
7.
J Immunother Cancer ; 8(1)2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32169869

RESUMO

BACKGROUND: Neuroblastoma (NB) is a childhood cancer for which new treatment options are needed. The success of immune checkpoint blockade in the treatment of adult solid tumors has prompted the exploration of immunotherapy in NB; however, clinical evidence indicates that the vast majority of NB patients do not respond to single-agent checkpoint inhibitors. This motivates a need for therapeutic strategies to increase NB tumor immunogenicity. The goal of this study was to evaluate a new immunotherapeutic strategy for NB based on potent activation of the stimulator of interferon genes (STING) pathway. METHODS: To promote STING activation in NB cells and tumors, we utilized STING-activating nanoparticles (STING-NPs) that are designed to mediate efficient cytosolic delivery of the endogenous STING ligand, 2'3'-cGAMP. We investigated tumor-intrinsic responses to STING activation in both MYCN-amplified and non-amplified NB cell lines, evaluating effects on STING signaling, apoptosis, and the induction of immunogenic cell death. The effects of intratumoral administration of STING-NPs on CD8+ T cell infiltration, tumor growth, and response to response to PD-L1 checkpoint blockade were evaluated in syngeneic models of MYCN-amplified and non-amplified NB. RESULTS: The efficient cytosolic delivery of 2'3'-cGAMP enabled by STING-NPs triggered tumor-intrinsic STING signaling effects in both MYCN-amplified and non-amplified NB cell lines, resulting in increased expression of interferon-stimulated genes and pro-inflammatory cytokines as well as NB cell death at concentrations 2000-fold to 10000-fold lower than free 2'3'-cGAMP. STING-mediated cell death in NB was associated with release or expression of several danger associated molecular patterns that are hallmarks of immunogenic cell death, which was further validated via cell-based vaccination and tumor challenge studies. Intratumoral administration of STING-NPs enhanced STING activation relative to free 2'3'-cGAMP in NB tumor models, converting poorly immunogenic tumors into tumoricidal and T cell-inflamed microenvironments and resulting in inhibition of tumor growth, increased survival, and induction of immunological memory that protected against tumor re-challenge. In a model of MYCN-amplified NB, STING-NPs generated an abscopal response that inhibited distal tumor growth and improved response to PD-L1 immune checkpoint blockade. CONCLUSIONS: We have demonstrated that activation of the STING pathway, here enabled by a nanomedicine approach, stimulates immunogenic cell death and remodels the tumor immune microenvironment to inhibit NB tumor growth and improve responses to immune checkpoint blockade, providing a multifaceted immunotherapeutic approach with potential to enhance immunotherapy outcomes in NB.


Assuntos
Morte Celular Imunogênica/imunologia , Imunoterapia/métodos , Proteínas de Membrana/metabolismo , Neuroblastoma/terapia , Humanos , Neuroblastoma/imunologia , Transdução de Sinais
8.
Cell Mol Bioeng ; 12(5): 429-442, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31719925

RESUMO

INTRODUCTION: Nucleic acids have gained recognition as promising immunomodulatory therapeutics. However, their potential is limited by several drug delivery barriers, and there is a need for technologies that enhance intracellular delivery of nucleic acid drugs. Furthermore, controlled and sustained release is a significant concern, as the kinetics and localization of immunomodulators can influence resultant immune responses. Here, we describe the design and initial evaluation of poly(lactic-co-glycolic) acid (PLGA) microparticle (MP) depots for enhanced retention and sustained release of endosomolytic nanoparticles that enable the cytosolic delivery of nucleic acids. METHODS: Endosomolytic p[DMAEMA]10kD-bl-[PAA0.3-co-DMAEMA0.3-co-BMA0.4]25kD diblock copolymers were synthesized by reversible addition-fragmentation chain transfer polymerization. Polymers were electrostatically complexed with nucleic acids and resultant nanoparticles (NPs) were encapsulated in PLGA MPs. To modulate release kinetics, ammonium bicarbonate was added as a porogen. Release profiles were quantified in vitro and in vivo via quantification of fluorescently-labeled nucleic acid. Bioactivity of released NPs was assessed using small interfering RNA (siRNA) targeting luciferase as a representative nucleic acid cargo. MPs were incubated with luciferase-expressing 4T1 (4T1-LUC) breast cancer cells in vitro or administered intratumorally to 4T1-LUC breast tumors, and silencing via RNA interference was quantified via longitudinal luminescence imaging. RESULTS: Endosomolytic NPs complexed to siRNA were effectively loaded into PLGA MPs and release kinetics could be modulated in vitro and in vivo via control of MP porosity, with porous MPs exhibiting faster cargo release. In vitro, release of NPs from porous MP depots enabled sustained luciferase knockdown in 4T1 breast cancer cells over a five-day treatment period. Administered intratumorally, MPs prolonged the retention of nucleic acid within the injected tumor, resulting in enhanced and sustained silencing of luciferase relative to a single bolus administration of NPs at an equivalent dose. CONCLUSION: This work highlights the potential of PLGA MP depots as a platform for local release of endosomolytic polymer NPs that enhance the cytosolic delivery of nucleic acid therapeutics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA