Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Cell ; 161(5): 1112-1123, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25959773

RESUMO

Glutamylation, the most prevalent tubulin posttranslational modification, marks stable microtubules and regulates recruitment and activity of microtubule- interacting proteins. Nine enzymes of the tubulin tyrosine ligase-like (TTLL) family catalyze glutamylation. TTLL7, the most abundant neuronal glutamylase, adds glutamates preferentially to the ß-tubulin tail. Coupled with ensemble and single-molecule biochemistry, our hybrid X-ray and cryo-electron microscopy structure of TTLL7 bound to the microtubule delineates a tripartite microtubule recognition strategy. The enzyme uses its core to engage the disordered anionic tails of α- and ß-tubulin, and a flexible cationic domain to bind the microtubule and position itself for ß-tail modification. Furthermore, we demonstrate that all single-chain TTLLs with known glutamylase activity utilize a cationic microtubule-binding domain analogous to that of TTLL7. Therefore, our work reveals the combined use of folded and intrinsically disordered substrate recognition elements as the molecular basis for specificity among the enzymes primarily responsible for chemically diversifying cellular microtubules.


Assuntos
Peptídeo Sintases/química , Peptídeo Sintases/metabolismo , Sequência de Aminoácidos , Animais , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Peptídeo Sintases/genética , Alinhamento de Sequência
2.
Chem Res Toxicol ; 34(6): 1604-1611, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-33891387

RESUMO

Fumonisins are mycotoxins produced by a number of species of Fusarium and Aspergillus. They are polyketides that possess a linear polyol structure with two tricarballylic acid side chains and an amine moiety. Toxicity results from their inhibition of Ceramide Synthase (CerS), which perturbs sphingolipid concentrations. The tricarballylic side chains and amine group of fumonisins are key molecular features responsible for inhibiting CerS, however their individual contributions toward overall toxicity are not fully understood. We have recently reported novel, deaminated fumonisins produced by A. niger and have identified an enzyme (AnFAO) responsible for their synthesis. Here we performed a structure/function activity assay to investigate the individual contributions of the tricarballylic acid and amine toward overall fumonisin toxicity. Lemna minor was treated at 40 µM against FB1, hydrolyzed FB1 (hFB1), deaminated FB1 (FPy1), or hydrolyzed/deaminated (hFPy1). Four end points were monitored: plant dry weight, frond surface area, lipidomics, and metabolomics. Overall, hFB1 was less toxic than FB1 and FPy1 was less toxic than hFB1. hFPy1 which lacks both the amine group and tricarballylic side chains was also less toxic than FB1 and hFB1, however it was not significantly less toxic than FPy1. Lipidomic analysis showed that FB1 treatment significantly increased levels of phosphotidylcholines, ceramides, and pheophorbide A, while significantly decreasing the levels of diacylglycerides, sulfoquinovosyl diacylglycerides, and chlorophyll. Metabolomic profiling revealed a number of significantly increased compounds that were unique to FB1 treatment including phenylalanine, asymmetric dimethylarginine (ADMA), S-methylmethionine, saccharopine, and tyrosine. Conversely, citrulline, N-acetylornithine and ornithine were significantly elevated in the presence of hFB1 but not any of the other fumonisin analogues. These data provide evidence that although removal of the tricarballylic side chains significantly reduces toxicity of fumonisins, the amine functional group is a key contributor to fumonisin toxicity in L. minor and justify future toxicity studies in mammalian systems.


Assuntos
Araceae/efeitos dos fármacos , Fumonisinas/toxicidade , Animais , Fumonisinas/química , Fumonisinas/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade
3.
Proc Natl Acad Sci U S A ; 114(25): 6545-6550, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28576883

RESUMO

Glycylation and glutamylation, the posttranslational addition of glycines and glutamates to genetically encoded glutamates in the intrinsically disordered tubulin C-terminal tails, are crucial for the biogenesis and stability of cilia and flagella and play important roles in metazoan development. Members of the diverse family of tubulin tyrosine ligase-like (TTLL) enzymes catalyze these modifications, which are part of an evolutionarily conserved and complex tubulin code that regulates microtubule interactions with cellular effectors. The site specificity of TTLL enzymes and their biochemical interplay remain largely unknown. Here, we report an in vitro characterization of a tubulin glycylase. We show that TTLL3 glycylates the ß-tubulin tail at four sites in a hierarchical order and that TTLL3 and the glutamylase TTLL7 compete for overlapping sites on the tubulin tail, providing a molecular basis for the anticorrelation between glutamylation and glycylation observed in axonemes. This anticorrelation demonstrates how a combinatorial tubulin code written in two different posttranslational modifications can arise through the activities of related but distinct TTLL enzymes. To elucidate what structural elements differentiate TTLL glycylases from glutamylases, with which they share the common TTL scaffold, we determined the TTLL3 X-ray structure at 2.3-Å resolution. This structure reveals two architectural elements unique to glycyl initiases and critical for their activity. Thus, our work sheds light on the structural and functional diversification of TTLL enzymes, and constitutes an initial important step toward understanding how the tubulin code is written through the intersection of activities of multiple TTLL enzymes.


Assuntos
Peptídeo Sintases/química , Tubulina (Proteína)/química , Animais , Axonema/genética , Cílios/genética , Flagelos/genética , Glutamatos/genética , Glicina/genética , Humanos , Microtúbulos/química , Microtúbulos/genética , Peptídeo Sintases/genética , Processamento de Proteína Pós-Traducional/genética , Tubulina (Proteína)/genética , Tirosina/genética , Xenopus/genética
4.
J Biol Chem ; 290(28): 17163-72, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25957412

RESUMO

Microtubules give rise to intracellular structures with diverse morphologies and dynamics that are crucial for cell division, motility, and differentiation. They are decorated with abundant and chemically diverse posttranslational modifications that modulate their stability and interactions with cellular regulators. These modifications are important for the biogenesis and maintenance of complex microtubule arrays such as those found in spindles, cilia, neuronal processes, and platelets. Here we discuss the nature and subcellular distribution of these posttranslational marks whose patterns have been proposed to constitute a tubulin code that is interpreted by cellular effectors. We review the enzymes responsible for writing the tubulin code, explore their functional consequences, and identify outstanding challenges in deciphering the tubulin code.


Assuntos
Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Animais , Humanos , Cinética , Microtúbulos/química , Microtúbulos/metabolismo , Modelos Biológicos , Modelos Moleculares , Complexos Multienzimáticos/metabolismo , Peptídeo Sintases/metabolismo , Multimerização Proteica , Processamento de Proteína Pós-Traducional
5.
Proc Natl Acad Sci U S A ; 109(24): 9360-5, 2012 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-22645341

RESUMO

Antifreeze proteins (AFPs) are found in organisms ranging from fish to bacteria, where they serve different functions to facilitate survival of their host. AFPs that protect freeze-intolerant fish and insects from internal ice growth bind to ice using a regular array of well-conserved residues/motifs. Less is known about the role of AFPs in freeze-tolerant species, which might be to beneficially alter the structure of ice in or around the host. Here we report the 0.95-Å high-resolution crystal structure of a 223-residue secreted AFP from the snow mold fungus Typhula ishikariensis. Its main structural element is an irregular ß-helix with six loops of 18 or more residues that lies alongside an α-helix. ß-Helices have independently evolved as AFPs on several occasions and seem ideally structured to bind to several planes of ice, including the basal plane. A novelty of the ß-helical fold is the nonsequential arrangement of loops that places the N- and C termini inside the solenoid of ß-helical coils. The ice-binding site (IBS), which could not be predicted from sequence or structure, was located by site-directed mutagenesis to the flattest surface of the protein. It is remarkable for its lack of regularity and its poor conservation in homologs from psychrophilic diatoms and bacteria and other fungi.


Assuntos
Proteínas Anticongelantes/metabolismo , Sequência Conservada , Fungos/metabolismo , Gelo , Neve , Sequência de Aminoácidos , Proteínas Anticongelantes/química , Sítios de Ligação , Modelos Moleculares , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Homologia de Sequência de Aminoácidos
6.
Proc Natl Acad Sci U S A ; 108(18): 7363-7, 2011 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-21482800

RESUMO

The mechanism by which antifreeze proteins (AFPs) irreversibly bind to ice has not yet been resolved. The ice-binding site of an AFP is relatively hydrophobic, but also contains many potential hydrogen bond donors/acceptors. The extent to which hydrogen bonding and the hydrophobic effect contribute to ice binding has been debated for over 30 years. Here we have elucidated the ice-binding mechanism through solving the first crystal structure of an Antarctic bacterial AFP. This 34-kDa domain, the largest AFP structure determined to date, folds as a Ca(2+)-bound parallel beta-helix with an extensive array of ice-like surface waters that are anchored via hydrogen bonds directly to the polypeptide backbone and adjacent side chains. These bound waters make an excellent three-dimensional match to both the primary prism and basal planes of ice and in effect provide an extensive X-ray crystallographic picture of the AFPice interaction. This unobstructed view, free from crystal-packing artefacts, shows the contributions of both the hydrophobic effect and hydrogen bonding during AFP adsorption to ice. We term this mode of binding the "anchored clathrate" mechanism of AFP action.


Assuntos
Proteínas Anticongelantes/metabolismo , Gelo , Modelos Moleculares , Ligação Proteica/fisiologia , Conformação Proteica , Proteínas Anticongelantes/química , Cristalografia por Raios X , Ligação de Hidrogênio , Transição de Fase , Temperatura
7.
Toxins (Basel) ; 16(9)2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39330862

RESUMO

Zearalenone and radicicol are resorcylic acid lactones produced by numerous plant pathogenic fungi. Zearalenone is a non-steroidal estrogen mimic that can cause serious reproductive issues in livestock that consume contaminated feed. Radicicol is a potent inhibitor of the molecular chaperone Hsp90, which, in plants, has an important role in coordinating the host's immune response during infection. Here, we describe the identification and characterization of a soil-borne strain of the Gram-positive bacterium Aeromicrobium sp. capable of hydrolyzing the macrolide ring of resorcylic acid lactones, including zearalenone and radicicol. Proteomic analysis of biochemically enriched fractions from the isolated and cultured bacterium identified an α/ß-hydrolase responsible for this activity. A recombinantly expressed and purified form of the hydrolase (termed RALH) was active against both zearalenone and radicicol. Interpretation of high-resolution mass spectrometry and NMR data confirmed the structures of the enzymatic products as the previously reported non-toxic metabolite hydrolyzed zearalenone and hydrolyzed radicicol. Hydrolyzed radicicol was demonstrated to no longer inhibit the ATPase activity of the Saccharomyces cerevisiae Hsp90 homolog in vitro. Enzymatic degradation of resorcylic acid lactones will enable insight into their biological functions.


Assuntos
Lactonas , Zearalenona , Zearalenona/metabolismo , Zearalenona/química , Hidrólise , Lactonas/metabolismo , Lactonas/química , Macrolídeos/metabolismo , Macrolídeos/química , Hidrolases/metabolismo
8.
Bioorg Med Chem Lett ; 23(15): 4408-12, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23777780

RESUMO

Tubulin is subject to a reversible post-translational modification involving polyglutamylation and deglutamylation of glutamate residues in its C-terminal tail. This process plays key roles in regulating the function of microtubule associated proteins, neuronal development, and metastatic progression. This study describes the synthesis and testing of three phosphinic acid-based inhibitors that have been designed to inhibit both the glutamylating and deglutamylating enzymes. The compounds were tested against the polyglutamylase TTLL7 using tail peptides as substrates (100 µM) and the most potent inhibitor displayed an IC50 value of 150 µM. The incorporation of these compounds into tubulin C-terminal tail peptides may lead to more potent TTLL inhibitors.


Assuntos
Inibidores Enzimáticos/química , Peptídeo Sintases/antagonistas & inibidores , Ácidos Fosfínicos/química , Animais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Camundongos , Peptídeo Sintases/metabolismo , Ácidos Fosfínicos/síntese química , Ácidos Fosfínicos/metabolismo , Ligação Proteica
9.
Front Plant Sci ; 14: 1044675, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36760639

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) is a disease leading to spontaneous abortions and stillbirths in sows and lowered life quality and expectancy in growing pigs. PRRS is prevalent worldwide and has significant economic impacts to swine industries around the globe. Co-expression of the two most abundant proteins in the viral envelope, the matrix protein (M) and glycosylated protein 5 (GP5), can produce a neutralizing immune response for the virus providing a potentially effective subunit vaccine against the disease, but these proteins are difficult to express. The goal of this research was to display antigenic portions of the M and GP5 proteins on the surface of tobacco mosaic virus-like particles. A modified tobacco mosaic virus coat protein (TMVc) was transiently expressed in Nicotiana benthamiana leaves and targeted to three subcellular compartments along the secretory pathway to introduce glycosylation patterns important for M-GP5 epitope immunogenicity. We found that accumulation levels in the apoplast were similar to the ER and the vacuole. Because glycans present on plant apoplastic proteins are closest to those present on PRRSV proteins, a TMVc-M-GP5 fusion construct was targeted to the apoplast and accumulated at over 0.5 mg/g of plant fresh weight. TMVc virus-like particles self-assembled in plant cells and surface-displayed the M-GP5 epitope, as visualized by transmission electron microscopy and immunogold localization. These promising findings lay the foundation for immunogenicity and protective-immunity studies in animals to examine the efficacy of this vaccine candidate as a measure to control PRRS.

10.
Toxins (Basel) ; 14(8)2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-36006206

RESUMO

Fumonisin mycotoxins are a family of secondary metabolites produced by Fusarium verticillioides and related species, as well as some strains of Aspergillus niger. Fumonisin contamination of maize is a concern when grown under hot, dry conditions. When present above regulatory levels, there can be effects on animal health. New tools to reduce the toxicity of maize and maize products with high concentrations of fumonisin are needed. Recently, we reported an amine oxidase (AnFAO) from a fumonisin-producing Aspergillus niger strain capable of oxidatively deaminating intact fumonisins. In this study, AnFAO was used to reduce intact fumonisin concentrations in milled maize flour, whole kernel maize inoculated with fumonisin-producing Fusarium verticillioides, and dried distillers' grains with solubles (DDGS). The data showed that milled maize flour incubated with 1 µM AnFAO for 1 h resulted in complete deamination of FB1 and FB2. A greater than 90% reduction in FB1-3 concentrations was observed following a simple washing procedure of whole kernel maize in the presence of 1 µM AnFAO for 1 h. Similarly, a ≥86% reduction in FB1-3 concentrations was observed in DDGS after 4 h incubation with 1 µM AnFAO. Finally, we engineered the methylotrophic yeast Pichia pastoris to produce functional AnFAO in both a secreted and intracellular form. These results support the further development and application of AnFAO as a promising tool to remediate fumonisin-contaminated maize and maize products.


Assuntos
Fumonisinas , Fusarium , Aminas , Animais , Aspergillus , Aspergillus niger/metabolismo , Fumonisinas/toxicidade , Fusarium/metabolismo , Oxirredutases/metabolismo , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA