Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Eur Heart J ; 44(27): 2483-2494, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-36810794

RESUMO

AIMS: Atrial fibrillation (AF) is associated with altered cAMP/PKA signaling and an AF-promoting reduction of L-type Ca2+-current (ICa,L), the mechanisms of which are poorly understood. Cyclic-nucleotide phosphodiesterases (PDEs) degrade cAMP and regulate PKA-dependent phosphorylation of key calcium-handling proteins, including the ICa,L-carrying Cav1.2α1C subunit. The aim was to assess whether altered function of PDE type-8 (PDE8) isoforms contributes to the reduction of ICa,L in persistent (chronic) AF (cAF) patients. METHODS AND RESULTS: mRNA, protein levels, and localization of PDE8A and PDE8B isoforms were measured by RT-qPCR, western blot, co-immunoprecipitation and immunofluorescence. PDE8 function was assessed by FRET, patch-clamp and sharp-electrode recordings. PDE8A gene and protein levels were higher in paroxysmal AF (pAF) vs. sinus rhythm (SR) patients, whereas PDE8B was upregulated in cAF only. Cytosolic abundance of PDE8A was higher in atrial pAF myocytes, whereas PDE8B tended to be more abundant at the plasmalemma in cAF myocytes. In co-immunoprecipitation, only PDE8B2 showed binding to Cav1.2α1C subunit which was strongly increased in cAF. Accordingly, Cav1.2α1C showed a lower phosphorylation at Ser1928 in association with decreased ICa,L in cAF. Selective PDE8 inhibition increased Ser1928 phosphorylation of Cav1.2α1C, enhanced cAMP at the subsarcolemma and rescued the lower ICa,L in cAF, which was accompanied by a prolongation of action potential duration at 50% of repolarization. CONCLUSION: Both PDE8A and PDE8B are expressed in human heart. Upregulation of PDE8B isoforms in cAF reduces ICa,L via direct interaction of PDE8B2 with the Cav1.2α1C subunit. Thus, upregulated PDE8B2 might serve as a novel molecular mechanism of the proarrhythmic reduction of ICa,L in cAF.


Assuntos
Fibrilação Atrial , Humanos , Cálcio/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Miócitos Cardíacos/fisiologia , Fosforilação
2.
Opt Express ; 30(20): 36509-36525, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36258578

RESUMO

In shallow nearshore waters, seafloor heights and properties can be accurately measured by the current generation of space-based elastic backscatter lidars: CALIOP, flying aboard the CALIPSO satellite and ATLAS aboard ICESat-2. CALIOP's 532 nm volume depolarization ratios, together with the ratios of the attenuated backscatter coefficients measured at 532 nm and 1064 nm, can efficiently distinguish optically shallow waters from nearby land surfaces and deep oceans. ATLAS's high vertical resolution photon measurements can accurately determine seafloor depths in shallow water bodies, characterize seafloor reflectance, and provide assessments of ocean biomass concentrations in the intervening water column. By adding bathymetry, seafloor optical properties (e.g., reflectance, depolarization ratio and attenuated backscatter), and nighttime observations, space lidar measurements obtained in nearshore waters can provide a wealth of unique information to complement existing satellite-based ocean color remote sensing capabilities. The results reported here demonstrate the feasibility of using satellite lidars for nearshore seafloor ecosystem analyses, which in turn provide critical insights for studies of coastal navigation and seabed topography changes due to disasters, as well as the temporal and spatial morphological evolution of coastal systems.

3.
Int J Mol Sci ; 23(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35743074

RESUMO

Disturbances in Endoplasmic Reticulum (ER) homeostasis induce ER stress, which has been involved in the development and progression of various heart diseases, including arrhythmias, cardiac hypertrophy, ischemic heart diseases, dilated cardiomyopathy, and heart failure. A mild-to-moderate ER stress is considered beneficial and adaptative for heart functioning by engaging the pro-survival unfolded protein response (UPR) to restore normal ER function. By contrast, a severe or prolonged ER stress is detrimental by promoting cardiomyocyte apoptosis through hyperactivation of the UPR pathways. Previously, we have demonstrated that the NAD+-dependent deacetylase SIRT1 is cardioprotective in response to severe ER stress by regulating the PERK pathway of the UPR, suggesting that activation of SIRT1 could protect against ER-stress-induced cardiac damage. The purpose of this study was to identify natural molecules able to alleviate ER stress and inhibit cardiomyocyte cell death through SIRT1 activation. Several phenolic compounds, abundant in vegetables, fruits, cereals, wine, and tea, were reported to stimulate the deacetylase activity of SIRT1. Here, we evaluated the cardioprotective effect of ten of these phenolic compounds against severe ER stress using cardiomyoblast cells and mice. Among the molecules tested, we showed that ferulic acid, pterostilbene, and tyrosol significantly protect cardiomyocytes and mice heart from cardiac alterations induced by severe ER stress. By studying the mechanisms involved, we showed that the activation of the PERK/eIF2α/ATF4/CHOP pathway of the UPR was reduced by ferulic acid, pterostilbene, and tyrosol under ER stress conditions, leading to a reduction in cardiomyocyte apoptosis. The protection afforded by these phenolic compounds was not directly related to their antioxidant activity but rather to their ability to increase SIRT1-mediated deacetylation of eIF2α. Taken together, our results suggest that ferulic acid, pterostilbene, and tyrosol are promising molecules to activate SIRT1 to protect the heart from the adverse effects of ER stress.


Assuntos
Fator de Iniciação 2 em Eucariotos , Sirtuína 1 , Animais , Apoptose , Ácidos Cumáricos , Estresse do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos/metabolismo , Camundongos , Álcool Feniletílico/análogos & derivados , Sirtuína 1/metabolismo , Estilbenos , Resposta a Proteínas não Dobradas , eIF-2 Quinase/metabolismo
4.
J Mol Cell Cardiol ; 155: 10-20, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33631188

RESUMO

AIM: To obtain a quantitative expression profile of the main genes involved in the cAMP-signaling cascade in human control atria and in different cardiac pathologies. METHODS AND RESULTS: Expression of 48 target genes playing a relevant role in the cAMP-signaling cascade was assessed by RT-qPCR. 113 samples were obtained from right atrial appendages (RAA) of patients in sinus rhythm (SR) with or without atrium dilation, paroxysmal atrial fibrillation (AF), persistent AF or heart failure (HF); and left atrial appendages (LAA) from patients in SR or with AF. Our results show that right and left atrial appendages in donor hearts or from SR patients have similar expression values except for AC7 and PDE2A. Despite the enormous chamber-dependent variability in the gene-expression changes between pathologies, several distinguishable patterns could be identified. PDE8A, PI3Kγ and EPAC2 were upregulated in AF. Different phosphodiesterase (PDE) families showed specific pathology-dependent changes. CONCLUSION: By comparing mRNA-expression patterns of the cAMP-signaling cascade related genes in right and left atrial appendages of human hearts and across different pathologies, we show that 1) gene expression is not significantly affected by cardioplegic solution content, 2) it is appropriate to use SR atrial samples as controls, and 3) many genes in the cAMP-signaling cascade are affected in AF and HF but only few of them appear to be chamber (right or left) specific. TOPIC: Genetic changes in human diseased atria. TRANSLATIONAL PERSPECTIVE: The cyclic AMP signaling pathway is important for atrial function. However, expression patterns of the genes involved in the atria of healthy and diseased hearts are still unclear. We give here a general overview of how different pathologies affect the expression of key genes in the cAMP signaling pathway in human right and left atria appendages. Our study may help identifying new genes of interest as potential therapeutic targets or clinical biomarkers for these pathologies and could serve as a guide in future gene therapy studies.


Assuntos
AMP Cíclico/metabolismo , Variação Genética , Átrios do Coração/metabolismo , Sistemas do Segundo Mensageiro/genética , Idoso , Alelos , Apêndice Atrial/metabolismo , Fibrilação Atrial/complicações , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/genética , Fibrilação Atrial/fisiopatologia , Biomarcadores , Suscetibilidade a Doenças , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/etiologia , Humanos , Masculino , Pessoa de Meia-Idade , Proteoma , Proteômica/métodos
5.
Transpl Int ; 34(11): 2415-2417, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34358369

RESUMO

We reported 3 kidney transplant patients with PTLD who developed mixed AR following IS treatment minimization. AR episodes were treated with extracorporeal photopheresis (ECP), methylprednisolone and IVIG. In all patients, graft function improved under ECP and stabilized in the long term. These observations suggest that ECP is safe and efficient for treatment of AR in the context of PTLD.


Assuntos
Transplante de Rim , Fotoferese , Aloenxertos , Rejeição de Enxerto/terapia , Humanos , Rim , Transplante de Rim/efeitos adversos
6.
Circulation ; 137(21): 2256-2273, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29217642

RESUMO

BACKGROUND: Myocardial metabolic impairment is a major feature in chronic heart failure. As the major coenzyme in fuel oxidation and oxidative phosphorylation and a substrate for enzymes signaling energy stress and oxidative stress response, nicotinamide adenine dinucleotide (NAD+) is emerging as a metabolic target in a number of diseases including heart failure. Little is known on the mechanisms regulating homeostasis of NAD+ in the failing heart. METHODS: To explore possible alterations of NAD+ homeostasis in the failing heart, we quantified the expression of NAD+ biosynthetic enzymes in the human failing heart and in the heart of a mouse model of dilated cardiomyopathy (DCM) triggered by Serum Response Factor transcription factor depletion in the heart (SRFHKO) or of cardiac hypertrophy triggered by transverse aorta constriction. We studied the impact of NAD+ precursor supplementation on cardiac function in both mouse models. RESULTS: We observed a 30% loss in levels of NAD+ in the murine failing heart of both DCM and transverse aorta constriction mice that was accompanied by a decrease in expression of the nicotinamide phosphoribosyltransferase enzyme that recycles the nicotinamide precursor, whereas the nicotinamide riboside kinase 2 (NMRK2) that phosphorylates the nicotinamide riboside precursor is increased, to a higher level in the DCM (40-fold) than in transverse aorta constriction (4-fold). This shift was also observed in human failing heart biopsies in comparison with nonfailing controls. We show that the Nmrk2 gene is an AMP-activated protein kinase and peroxisome proliferator-activated receptor α responsive gene that is activated by energy stress and NAD+ depletion in isolated rat cardiomyocytes. Nicotinamide riboside efficiently rescues NAD+ synthesis in response to FK866-mediated inhibition of nicotinamide phosphoribosyltransferase and stimulates glycolysis in cardiomyocytes. Accordingly, we show that nicotinamide riboside supplementation in food attenuates the development of heart failure in mice, more robustly in DCM, and partially after transverse aorta constriction, by stabilizing myocardial NAD+ levels in the failing heart. Nicotinamide riboside treatment also robustly increases the myocardial levels of 3 metabolites, nicotinic acid adenine dinucleotide, methylnicotinamide, and N1-methyl-4-pyridone-5-carboxamide, that can be used as validation biomarkers for the treatment. CONCLUSIONS: The data show that nicotinamide riboside, the most energy-efficient among NAD precursors, could be useful for treatment of heart failure, notably in the context of DCM, a disease with few therapeutic options.


Assuntos
Cardiomiopatia Dilatada/tratamento farmacológico , Niacinamida/análogos & derivados , Proteínas Quinases Ativadas por AMP/metabolismo , Acrilamidas/uso terapêutico , Animais , Ácido Cítrico/metabolismo , Citocinas/genética , Citocinas/metabolismo , Suplementos Nutricionais , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Insuficiência Cardíaca/prevenção & controle , Metaboloma/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , NAD/metabolismo , Niacinamida/uso terapêutico , Nicotinamida Fosforribosiltransferase/genética , Nicotinamida Fosforribosiltransferase/metabolismo , PPAR alfa/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Piperidinas/uso terapêutico , Compostos de Piridínio , Ratos , Fator de Resposta Sérica/deficiência , Fator de Resposta Sérica/genética
7.
Am J Transplant ; 19(2): 331-344, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30019521

RESUMO

Donation after circulatory death (DCD) holds great promise for improving cardiac graft availability; however, concerns persist regarding injury following warm ischemia, after donor circulatory arrest, and subsequent reperfusion. Application of preischemic treatments is limited for ethical reasons; thus, cardioprotective strategies applied at graft procurement (reperfusion) are of particular importance in optimizing graft quality. Given the key role of mitochondria in cardiac ischemia-reperfusion injury, we hypothesize that 3 reperfusion strategies-mild hypothermia, mechanical postconditioning, and hypoxia, when briefly applied at reperfusion onset-provoke mitochondrial changes that may underlie their cardioprotective effects. Using an isolated, working rat heart model of DCD, we demonstrate that all 3 strategies improve oxygen-consumption-cardiac-work coupling and increase tissue adenosine triphosphate content, in parallel with increased functional recovery. These reperfusion strategies, however, differentially affect mitochondria; mild hypothermia also increases phosphocreatine content, while mechanical postconditioning stimulates mitochondrial complex I activity and reduces cytochrome c release (marker of mitochondrial damage), whereas hypoxia upregulates the expression of peroxisome proliferator-activated receptor-gamma coactivator (regulator of mitochondrial biogenesis). Characterization of the role of mitochondria in cardioprotective reperfusion strategies should aid in the identification of new, mitochondrial-based therapeutic targets and the development of effective reperfusion strategies that could ultimately facilitate DCD heart transplantation.


Assuntos
Transplante de Coração/métodos , Mitocôndrias/patologia , Preservação de Órgãos/métodos , Traumatismo por Reperfusão/prevenção & controle , Reperfusão , Doadores de Tecidos , Obtenção de Tecidos e Órgãos/normas , Animais , Morte , Masculino , Mitocôndrias/metabolismo , Ratos , Ratos Wistar , Isquemia Quente
8.
BMC Nephrol ; 20(1): 334, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455233

RESUMO

BACKGROUND: The value of ANCA positivity in the setting of systemic lupus erythematous and their pathogenicity remains uncertain. CASE PRESENTATION: We report the case of a 48-year-old female with rapidly progressive kidney failure, arthro-myalgia and weight loss. Auto-immune screening showed anti-dsDNA antibodies, complement consumption and triple ANCA positivity. A first kidney biopsy done at presentation highlighted class IV-G glomerulonephritis with elective extra-capillary involvement and mainly C1q glomerular deposition at immunofluorescence study. After three months of a regimen combining steroids and cyclophosphamide, a second biopsy was performed and showed class IV-G glomerulonephritis with mainly endocapillary proliferation. CONCLUSION: This case is atypical in view of immunological profile and kidney histopathological presentation and evolution and gives rise to discussion in view of recent data on ANCA value in lupus nephritis, and suggests that different auto-immune pathways may be involved in lupus nephritis.


Assuntos
Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/imunologia , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/diagnóstico , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/imunologia , Nefrite Lúpica/diagnóstico , Nefrite Lúpica/imunologia , Injúria Renal Aguda/patologia , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/patologia , Diagnóstico Diferencial , Feminino , Humanos , Nefrite Lúpica/patologia , Pessoa de Meia-Idade
9.
Int J Mol Sci ; 20(20)2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658614

RESUMO

Heart failure is associated with profound alterations of energy metabolism thought to play a major role in the progression of this syndrome. SIRT1 is a metabolic sensor of cellular energy and exerts essential functions on energy metabolism, oxidative stress response, apoptosis, or aging. Importantly, SIRT1 deacetylates the peroxisome proliferator-activated receptor gamma co-activator 1α (PGC-1α), the master regulator of energy metabolism involved in mitochondrial biogenesis and fatty acid utilization. However, the exact role of SIRT1 in controlling cardiac energy metabolism is still incompletely understood and conflicting results have been obtained. We generated a cardio-specific inducible model of Sirt1 gene deletion in mice (Sirt1ciKO) to decipher the role of SIRT1 in control conditions and following cardiac stress induced by pressure overload. SIRT1 deficiency induced a progressive cardiac dysfunction, without overt alteration in mitochondrial content or properties. Sixteen weeks after Sirt1 deletion an increase in mitochondrial reactive oxygen species (ROS) production and a higher rate of oxidative damage were observed, suggesting disruption of the ROS production/detoxification balance. Following pressure overload, cardiac dysfunction and alteration in mitochondrial properties were exacerbated in Sirt1ciKO mice. Overall the results demonstrate that SIRT1 plays a cardioprotective role on cardiac energy metabolism and thereby on cardiac function.


Assuntos
Cardiopatias/genética , Coração , Pressão , Sirtuína 1/genética , Sirtuína 1/metabolismo , Animais , Ecocardiografia , Fibrose/patologia , Deleção de Genes , Cardiopatias/metabolismo , Cardiopatias/patologia , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Miócitos Cardíacos , Estresse Oxidativo , Espécies Reativas de Oxigênio , Tamoxifeno/efeitos adversos
10.
Int J Mol Sci ; 20(7)2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30934680

RESUMO

The bromodomain and extra-terminal domain family inhibitors (BETi) are a promising new class of anticancer agents. Since numerous anticancer drugs have been correlated to cardiomyopathy, and since BETi can affect non-cancerous tissues, we aimed to investigate in healthy animals any ultrastructural BETi-induced alterations of the heart as compared to skeletal muscle. Male Wistar rats were either treated during 3 weeks with I-BET-151 (2 or 10 mg/kg/day) (W3) or treated for 3 weeks then allowed to recover for another 3 weeks (W6) (3-weeks drug washout). Male C57Bl/6J mice were only treated during 5 days (50 mg/kg/day). We demonstrated the occurrence of ultrastructural alterations and progressive destruction of cardiomyocyte mitochondria after I-BET-151 exposure. Those mitochondrial alterations were cardiac muscle-specific, since the skeletal muscles of exposed animals were similar in ultrastructure presentation to the non-exposed animals. I-BET-151 decreased the respiration rate of heart mitochondria in a dose-dependent manner. At the higher dose, it also decreased mitochondrial mass, as evidenced by reduced right ventricular citrate synthase content. I-BET-151 reduced the right and left ventricular fractional shortening. The concomitant decrease in the velocity-time-integral in both the aorta and the pulmonary artery is also suggestive of an impaired heart function. The possible context-dependent cardiac side effects of these drugs have to be appreciated. Future studies should focus on the basic mechanisms of potential cardiovascular toxicities induced by BETi and strategies to minimize these unexpected complications.


Assuntos
Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/ultraestrutura , Animais , Eletrocardiografia , Coração/efeitos dos fármacos , Coração/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/efeitos dos fármacos , Especificidade de Órgãos , Ratos Wistar
11.
J Mol Cell Cardiol ; 102: 34-44, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27876471

RESUMO

PGC-1α, a key regulator of energy metabolism, seems to be a relevant therapeutic target to rectify the energy deficit observed in heart failure (HF). Since our previous work has shown positive effects of cobalamin (Cb) on PGC-1α cascade, we investigate the protective role of Cb in pressure overload-induced myocardial dysfunction. Mice were fed with normal diet (ND) or with Cb and folate supplemented diet (SD) 3weeks before and 4weeks after transverse aortic constriction (TAC). At the end, left ventricle hypertrophy and drop of ejection fraction were significantly lower in SD mice than in ND mice. Alterations in mitochondrial oxidative capacity, fatty acid oxidation and mitochondrial biogenesis transcription cascade were markedly improved by SD. In SD-TAC mice, lower expression level of the acetyltransferase GCN5 and upregulation of the methyltransferase PRMT1 were associated with a lower protein acetylation and a higher protein methylation levels. This was accompanied by a sustained expression of genes involved in mitochondrial biogenesis transcription cascade (Tfam, Nrf2, Cox1 and Cox4) after TAC in SD mice, suggesting a preserved activation of PGC-1α; this could be at least partly due to corrected acetylation/methylation status of this co-activator. The beneficial effect of the treatment would not be due to an effect of Cb and folate on oxidative stress or on homocysteinemia, which were unchanged by SD. These results showed that Cb and folate could protect the failing heart by preserving energy status through maintenance of mitochondrial biogenesis. It reinforces the concept of a metabolic therapy of HF.


Assuntos
Ácido Fólico/farmacologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Contração Miocárdica/efeitos dos fármacos , Vitamina B 12/farmacologia , Animais , Biomarcadores , Células Cultivadas , Suplementos Nutricionais , Modelos Animais de Doenças , Metabolismo Energético , Insuficiência Cardíaca/patologia , Hiper-Homocisteinemia/metabolismo , Camundongos , Modelos Biológicos , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Oxirredução , Estresse Oxidativo
12.
Clin Sci (Lond) ; 131(9): 803-822, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28424375

RESUMO

It is increasingly acknowledged that a sex and gender specificity affects the occurrence, development, and consequence of a plethora of pathologies. Mitochondria are considered as the powerhouse of the cell because they produce the majority of energy-rich phosphate bonds in the form of adenosine tri-phosphate (ATP) but they also participate in many other functions like steroid hormone synthesis, reactive oxygen species (ROS) production, ionic regulation, and cell death. Adequate cellular energy supply and survival depend on mitochondrial life cycle, a process involving mitochondrial biogenesis, dynamics, and quality control via mitophagy. It appears that mitochondria are the place of marked sexual dimorphism involving mainly oxidative capacities, calcium handling, and resistance to oxidative stress. In turn, sex hormones regulate mitochondrial function and biogenesis. Mutations in genes encoding mitochondrial proteins are the origin of serious mitochondrial genetic diseases. Mitochondrial dysfunction is also an important parameter for a large panel of pathologies including neuromuscular disorders, encephalopathies, cardiovascular diseases (CVDs), metabolic disorders, neuropathies, renal dysfunction etc. Many of these pathologies present sex/gender specificity. Here we review the sexual dimorphism of mitochondria from different tissues and how this dimorphism takes part in the sex specificity of important pathologies mainly CVDs and neurological disorders.


Assuntos
Trifosfato de Adenosina/biossíntese , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores Sexuais , Apoptose , Feminino , Humanos , Masculino , Mitocôndrias/fisiologia , Doenças Mitocondriais/fisiopatologia , Modelos Biológicos
13.
Therapie ; 79(2): 271-281, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37973491

RESUMO

Drug-induced kidney diseases represent a wide range of diseases that are responsible for a significant proportion of all acute kidney injuries and chronic kidney diseases. In the present review, we focused on drug-induced glomerular diseases, more precisely podocytopathies - minimal change diseases (MCD), focal segmental glomerulosclerosis (FSGS) - and membranous nephropathies (MN), from a physiological and a pharmacological point of view. The glomerular filtration barrier is composed of podocytes that form foot processes tightly connected and directly in contact with the basal membrane and surrounding capillaries. The common clinical feature of these diseases is represented by the loss of the ability of the filtration barrier to retain large proteins, leading to massive proteinuria and nephrotic syndrome. Drugs such as non-steroidal anti-inflammatory drugs (NSAIDs), D-penicillamine, tiopronin, trace elements, bisphosphonate, and interferons have been historically associated with the occurrence of MCD, FSGS, and MN. In the last ten years, the development of new anti-cancer agents, including tyrosine kinase inhibitors and immune checkpoint inhibitors, and research into their renal adverse effects highlighted these issues and have improved our comprehension of these diseases.


Assuntos
Glomerulosclerose Segmentar e Focal , Nefropatias , Nefrose Lipoide , Podócitos , Humanos , Glomerulosclerose Segmentar e Focal/induzido quimicamente , Glomerulosclerose Segmentar e Focal/metabolismo , Glomérulos Renais/metabolismo , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Podócitos/metabolismo , Nefrose Lipoide/metabolismo
14.
Heart Fail Rev ; 18(5): 557-66, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23090715

RESUMO

The concept of skeletal muscle myopathy as a main determinant of exercise intolerance in chronic heart failure (HF) is gaining acceptance. Symptoms that typify HF patients, including shortness of breath and fatigue, are often directly related to the abnormalities of the skeletal muscle in HF. Besides muscular wasting, alterations in skeletal muscle energy metabolism, including insulin resistance, have been implicated in HF. Adiponectin, an adipocytokine with insulin-sensitizing properties, receives increasing interest in HF. Circulating adiponectin levels are elevated in HF patients, but high levels are paradoxically associated with poor outcome. Previous analysis of m. vastus lateralis biopsies in HF patients highlighted a striking functional adiponectin resistance. Together with increased circulating adiponectin levels, adiponectin expression within the skeletal muscle is elevated in HF patients, whereas the expression of the main adiponectin receptor and genes involved in the downstream pathway of lipid and glucose metabolism is downregulated. In addition, the adiponectin-related metabolic disturbances strongly correlate with aerobic capacity (VO2 peak), sub-maximal exercise performance and muscle strength. These observations strengthen our hypothesis that adiponectin and its receptors play a key role in the development and progression of the "heart failure myopathy". The question whether adiponectin exerts beneficial rather than detrimental effects in HF is still left unanswered. This current research overview will elucidate the emerging role of adiponectin in HF and suggests potential therapeutic targets to tackle energy wasting in these patients.


Assuntos
Adiponectina/fisiologia , Metabolismo Energético , Insuficiência Cardíaca/metabolismo , Miocárdio/metabolismo , Humanos
15.
Drug Saf ; 46(8): 715-724, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37310614

RESUMO

Because of their broad-spectrum bactericidal activity, amoxicillin (AMX) and third-generation cephalosporins (TGC) are widely used for the prophylaxis and treatment of established infections. They are considered relatively safe, but several recent reports have suggested substantial nephrotoxicity, especially with AMX use. Considering the importance of AMX and TGC for clinical practice, we conducted this up-to-date review, using the PubMed database, which focuses specifically on the nephrotoxicity of these molecules. We also briefly review the pharmacology of AMX and TGC. Nephrotoxicity of AMX may be driven by several pathophysiological mechanisms, such as a type IV hypersensitivity reaction, anaphylaxis, or intratubular and/or urinary tract drug precipitation. In this review, we focused on the two main renal adverse effects of AMX, namely acute interstitial nephritis and crystal nephropathy. We summarize the current knowledge in terms of incidence, pathogenesis, factors, clinical features, and diagnosis. The purpose of this review is also to underline the probable underestimation of AMX nephrotoxicity and to educate clinicians about the recent increased incidence and severe renal prognosis associated with crystal nephropathy. We also suggest some key elements on the management of these complications to avoid inappropriate use and to limit the risk of nephrotoxicity. While renal injury appears to be rarer with TGC, several patterns of nephrotoxicity have been reported in the literature, such as nephrolithiasis, immune-mediated hemolytic anemia, or acute interstitial nephropathy, which we detail in the second part of this review.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Nefrite Intersticial , Humanos , Amoxicilina/efeitos adversos , Rim , Nefrite Intersticial/induzido quimicamente , Nefrite Intersticial/tratamento farmacológico , Cefalosporinas/efeitos adversos , Antibacterianos/efeitos adversos
16.
Cancers (Basel) ; 15(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37046701

RESUMO

BACKGROUND: Alongside their BCR-ABL specificity, TKIs used in chronic myeloid leukemia also target other tyrosine kinases expressed in the kidney such as PDGFR, c-KIT, SRC, and VEGFR, which may result in specific renal adverse drug reaction (ADR). To evaluate the renal safety profile in real-life conditions, a case/non-case study was performed on VigiBase®, the WHO global safety database. METHODS: From 7 November 2001 to 2 June 2021, all cases in which the involvement of imatinib, dasatinib, nilotinib, bosutinib, and ponatinib was suspected in the occurrence of renal ADR were extracted from VigiBase®. Disproportionality analyses were assessed using the reporting odds ratio. RESULTS: A total of 1409 cases were included. Imatinib accounts for half of the reported cases. A signal of disproportionate reporting (SDR) of renal failure and fluid retention was found for the five TKIs. Only dasatinib and nilotinib were related to an SDR for nephrotic syndrome. Nilotinib and ponatinib were related to an SDR for renal artery stenosis, while dasatinib was related to an SDR for thrombotic microangiopathy. No SDR for tubulointerstitial nephritis was observed. CONCLUSION: This study identified a new safety signal, nephrotic syndrome, for nilotinib and highlights the importance of post-marketing safety surveillance.

17.
PLoS One ; 18(9): e0292015, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37733758

RESUMO

The beta-adrenergic system is a potent stimulus for enhancing cardiac output that may become deleterious when energy metabolism is compromised as in heart failure. We thus examined whether the AMP-activated protein kinase (AMPK) that is activated in response to energy depletion may control the beta-adrenergic pathway. We studied the cardiac response to beta-adrenergic stimulation of AMPKα2-/- mice or to pharmacological AMPK activation on contractile function, calcium current, cAMP content and expression of adenylyl cyclase 5 (AC5), a rate limiting step of the beta-adrenergic pathway. In AMPKα2-/- mice the expression of AC5 (+50%), the dose response curve of left ventricular developed pressure to isoprenaline (p<0.001) or the response to forskolin, an activator of AC (+25%), were significantly increased compared to WT heart. Similarly, the response of L-type calcium current to 3-isobutyl-l-methylxanthine (IBMX), a phosphodiesterase inhibitor was significantly higher in KO (+98%, p<0.01) than WT (+57%) isolated cardiomyocytes. Conversely, pharmacological activation of AMPK by 5-aminoimidazole-4-carboxamide riboside (AICAR) induced a 45% decrease in AC5 expression (p<0.001) and a 40% decrease of cAMP content (P<0.001) as measured by fluorescence resonance energy transfer (FRET) compared to unstimulated rat cardiomyocytes. Finally, in experimental pressure overload-induced cardiac dysfunction, AMPK activation was associated with a decreased expression of AC5 that was blunted in AMPKα2-/- mice. The results show that AMPK activation down-regulates AC5 expression and blunts the beta-adrenergic cascade. This crosstalk between AMPK and beta-adrenergic pathways may participate in a compensatory energy sparing mechanism in dysfunctional myocardium.


Assuntos
Proteínas Quinases Ativadas por AMP , Insuficiência Cardíaca , Camundongos , Ratos , Animais , Cálcio , Miócitos Cardíacos , Adrenérgicos , Cálcio da Dieta
18.
Biochim Biophys Acta ; 1813(7): 1360-72, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20869993

RESUMO

The heart is responsible for pumping blood throughout the blood vessels to the periphery by repeated, rhythmic contractions at variable intensity. As such the heart should permanently adjust energy production to energy utilization and is a high-energy consumer. For this the heart mainly depends on oxidative metabolism for adequate energy production and on efficient energy transfer systems. In heart failure, there is disequilibrium between the work the heart has to perform and the energy it is able to produce to fulfill its needs. This has led to the concept of energy starvation of the failing heart. This includes decreased oxygen and substrate supply, altered substrate utilization, decreased energy production by mitochondria and glycolysis, altered energy transfer and inefficient energy utilization. Mitochondrial biogenesis and its transcription cascade are down-regulated. Disorganization of the cytoarchitecture of the failing cardiomyocyte also participates in energy wastage. Finally, the failing of the cardiac pump, by decreasing oxygen and substrate supply, leads to a systemic energy starvation. Metabolic therapy has thus emerged as an original and promising approach in the treatment heart failure. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection.


Assuntos
Metabolismo Energético , Insuficiência Cardíaca/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Ácidos Graxos/metabolismo , Glicólise , Coração/fisiopatologia , Humanos , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/patologia
19.
Am J Physiol Heart Circ Physiol ; 302(3): H665-74, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22101527

RESUMO

The present study was designed to characterize the mitochondrial dysfunction induced by catecholamines and to investigate whether curcumin, a natural antioxidant, induces cardioprotective effects against catecholamine-induced cardiotoxicity by preserving mitochondrial function. Because mitochondria play a central role in ischemia and oxidative stress, we hypothesized that mitochondrial dysfunction is involved in catecholamine toxicity and in the potential protective effects of curcumin. Male Wistar rats received subcutaneous injection of 150 mg·kg(-1)·day(-1) isoprenaline (ISO) for two consecutive days with or without pretreatment with 60 mg·kg(-1)·day(-1) curcumin. Twenty four hours after, cardiac tissues were examined for apoptosis and oxidative stress. Expression of proteins involved in mitochondrial biogenesis and function were measured by real-time RT-PCR. Isolated mitochondria and permeabilized cardiac fibers were used for swelling and mitochondrial function experiments, respectively. Mitochondrial morphology and permeability transition pore (mPTP) opening were assessed by fluorescence in isolated cardiomyocytes. ISO treatment induced cell damage, oxidative stress, and apoptosis that were prevented by curcumin. Moreover, mitochondria seem to play an important role in these effects as respiration and mitochondrial swelling were increased following ISO treatment, these effects being again prevented by curcumin. Importantly, curcumin completely prevented the ISO-induced increase in mPTP calcium susceptibility in isolated cardiomyocytes without affecting mitochondrial biogenesis and mitochondrial network dynamic. The results unravel the importance of mitochondrial dysfunction in isoprenaline-induced cardiotoxicity as well as a new cardioprotective effect of curcumin through prevention of mitochondrial damage and mPTP opening.


Assuntos
Cardiomegalia/tratamento farmacológico , Cardiotônicos/farmacologia , Curcumina/farmacologia , Isoproterenol/toxicidade , Doenças Mitocondriais/tratamento farmacológico , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Agonistas Adrenérgicos beta/toxicidade , Animais , Apoptose/efeitos dos fármacos , Cardiomegalia/induzido quimicamente , Cardiomegalia/metabolismo , Catecolaminas/metabolismo , Modelos Animais de Doenças , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Masculino , Doenças Mitocondriais/induzido quimicamente , Doenças Mitocondriais/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Miocardite/induzido quimicamente , Miocardite/tratamento farmacológico , Miocardite/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar
20.
J Clin Med ; 10(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34501251

RESUMO

Chronic kidney disease (CKD) is a major public health concern that affects around 10 percent of the world's population. The severity of CKD is mainly due to the high prevalence of cardiovascular (CV) complications in this population. The aim of this review is to describe the arterial remodelling associated with CKD, to provide a quick overview of the mechanisms involved and to review the recent pharmacological approaches aimed at improving vascular health in CKD. CKD patients are exposed to metabolic and haemodynamic disorders that may affect the CV system. Large artery functional and geometric abnormalities have been well documented in CKD patients and are associated with an increase in arterial stiffness and a maladaptive remodelling. Uraemic toxins, such as indoxyl sulphate, p-cresyl sulphate, protein carbamylation and advanced glycation products, exert various effects on vascular smooth muscle cell functions. The low-grade inflammation associated with CKD may also affect arterial wall composition and remodelling. It is worth noting that the CV risk for CKD patients remains high despite the pharmacological control of traditional CV risk factors, suggesting the need for innovative therapeutic strategies. An interventional study targeting the NLRP3 inflammasome has provided some interesting preliminary results that need to be confirmed, especially in terms of safety.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA